タグ「自然数」の検索結果

26ページ目:全1172問中251問~260問を表示)
宮城教育大学 国立 宮城教育大学 2015年 第1問
$p,\ q$を自然数として,$p>q$とする.等差数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\displaystyle S_p=\frac{p}{q}$,$\displaystyle S_q=\frac{q}{p}$が成り立つとする.次の問に答えよ.

(1)数列$\{a_n\}$の初項と公差を$p,\ q$を用いて表せ.
(2)自然数$m$に対して,数列$\{a_n\}$の初項から第$2^m$項までの和の逆数を$b_m$とする.このとき,数列$\{b_n\}$の初項から第$n$項までの和を求めよ.
(3)$(2)$の数列$\{b_n\}$の初項が$36$であり,数列$\{a_n\}$の第$p+q$項が$\displaystyle \frac{17}{48}$であるとき,$p$と$q$を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(m)$が最大となるような$m$を求めよ.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第2問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(3),\ E_{10}(4),\ E_{10}(5)$の中で最大のものはどれか.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
早稲田大学 私立 早稲田大学 2015年 第4問
$n$は任意の自然数,また,$k=1,\ 2,\ \cdots,\ n$について$a_k$は$0 \leqq a_k \leqq k$を満たす整数である.このとき,以下の問に答えよ.

(1)数学的帰納法により,次の等式を示せ.
\[ 1 \cdot 1!+2 \cdot 2!+\cdots +n \cdot n!=(n+1)!-1 \]
(2)$2015=a_1 \cdot 1!+a_2 \cdot 2!+\cdots +a_n \cdot n!$が成り立っているとき,$n$を求めよ.ただし,$a_n \neq 0$とする.
(3)$(2)$の等式を成立させる$a_1,\ a_2,\ \cdots, a_n$を求め,答のみ記入せよ.
早稲田大学 私立 早稲田大学 2015年 第2問
整数$x,\ y$が$x^2-2y^2=1$をみたすとき,次の問に答えよ.

(1)整数$a,\ b,\ u,\ v$が$(a+b \sqrt{2})(x+y \sqrt{2})=u+v \sqrt{2}$をみたすとき,$u,\ v$を$a,\ b,\ x,\ y$で表せ.さらに$a^2-2b^2=1$のときの$u^2-2v^2$の値を求めよ.ともに答のみでよい.
(2)$1<x+y \sqrt{2} \leqq 3+2 \sqrt{2}$のとき,$x=3$,$y=2$となることを示せ.
(3)自然数$n$に対して,$(3+2 \sqrt{2})^{n-1}<x+y \sqrt{2} \leqq (3+2 \sqrt{2})^n$のとき,$x+y \sqrt{2}=(3+2 \sqrt{2})^n$を示せ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

$A$を与えられた自然数として,
\[ a_1=3A,\quad a_{n+1}=\left\{ \begin{array}{ll}
a_n-2 & (n \text{が奇数のとき}) \\
a_n-1 & (n \text{が偶数のとき})
\end{array} \right. \]
によって定まる数列$\{a_n\}$を考える.

(1)$a_5,\ a_6$を$A$を用いて表すと,$a_5=[チ]$,$a_6=[ツ]$である.また一般に,$a_n$を$n$と$A$を用いて表すと,
\[ a_n=\left\{ \begin{array}{ll}
[テ] & (n \text{が奇数のとき}) \\
[ト] & (n \text{が偶数のとき})
\end{array} \right. \]
となる.
(2)$a_n>0$となる最大の自然数$n$を$N$とする.$N$を$A$を用いて表すと$N=[ナ]$であり,また$\displaystyle \sum_{n=1}^N a_n=[ニ]$である.
早稲田大学 私立 早稲田大学 2015年 第6問
$2$つの箱$\mathrm{A}$と$\mathrm{B}$に,自然数が$1$つ記されたカードが何枚かずつ入っている.箱$\mathrm{A}$,$\mathrm{B}$からカードを$1$枚ずつ,合計$2$枚のカードを取り出す試行を行う.自然数$n$に対し,取り出された$2$枚のカードに記された自然数の和が$n$である確率を$P_n$とする.

(1)箱$\mathrm{A}$に数字$2,\ 3$が記されたカードがそれぞれ$1$枚ずつ,箱$\mathrm{B}$に数字$1,\ 2,\ 3$が記されたカードがそれぞれ$1$枚ずつ入っているとき,$\displaystyle P_4=\frac{[ネ]}{[ノ]}$である.また,取り出された$2$枚のカードに記された$2$つの自然数の和の期待値は$\displaystyle \frac{[ハ]}{[ヒ]}$である.
(2)箱$\mathrm{A}$にカードが$3$枚,箱$\mathrm{B}$にカードが$5$枚入っていて,
\[ P_2=\frac{1}{15},\quad P_3=\frac{1}{5},\quad P_4=\frac{1}{3},\quad P_5=\frac{2}{5} \]
が成立している.このとき,箱$\mathrm{B}$に入っているカードのうち,最も枚数が多いのは$[フ]$という数字が記されたカードであり,その枚数は$[ヘ]$枚である.
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
立教大学 私立 立教大学 2015年 第2問
$a$と$b$は$1$以上$5$以下の自然数とし,放物線$C:y=-x^2+ax-b$を定める.このとき,次の問に答えよ.

(1)放物線$C$が$x$軸と相異なる$2$点で交わるような$(a,\ b)$の組は何通りあるか求めよ.
(2)放物線$C$が$x$軸と相異なる$2$点で交わり,それらの$x$座標がともに整数であるような$(a,\ b)$の組は何通りあるか求めよ.
(3)$(2)$のとき,放物線$C$と$x$軸の$2$つの交点の間の距離の最大値と,そのときの$(a,\ b)$の組を求めよ.
(4)$k$は自然数であり,直線$y=kx+1$は放物線$C$と接している.このときの$k$の最大値と,$k$を最大にする$(a,\ b)$の組を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。