タグ「自然数」の検索結果

25ページ目:全1172問中241問~250問を表示)
宮崎大学 国立 宮崎大学 2015年 第5問
$n$を$2$以上の自然数とする.$1$つの袋に$1$から$n$までの数を$1$つずつ書いた$n$個の球と,数$0$を書いた$2$個の球が入っている.これら$(n+2)$個の球が入っている袋から,元に戻すことなく,$1$個ずつ$3$回球を取り出し,その$3$個に書かれている数を取り出した順に$a,\ b,\ c$とする.事象$a+b \leqq c$の起こる確率を$P(n)$とするとき,次の各問に答えよ.

(1)$P(3)$を求めよ.
(2)$n$を偶数とするとき,$P(n)$を,$n$を用いて表せ.
電気通信大学 国立 電気通信大学 2015年 第4問
数列$\{a_n\}$は初項が$a_1=1$,公差が正の定数$d$の等差数列とする.このとき,自然数の定数$p$を用いて
\[ b_n=a_na_{n+p} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定まる数列$\{b_n\}$について考える.ただし,$a_na_{n+p}$は$a_n$と$a_{n+p}$の積を表す.以下の問いに答えよ.

(1)数列$\{b_n\}$の階差数列$\{c_n\}$が等差数列であることを示せ.さらに,数列$\{c_n\}$の初項$c_1$と公差$D$を$d,\ p$を用いて表せ.
(2)ある定数$C$を用いて
\[ \frac{1}{b_n}=C \left( \frac{1}{a_n}-\frac{1}{a_{n+p}} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と表すことができる.このとき,$C$を$d,\ p$を用いて表せ.
以下の問いでは,数列$\{b_n\}$が初項から順に
\[ b_1=7,\quad b_2=40,\quad b_3=91,\ \cdots \]
となる場合を考える.
(3)定数$d,\ p$および数列$\{a_n\}$,$\{b_n\}$の一般項をそれぞれ求めよ.
(4)数列$\{b_n\}$に対して,
\[ S_n=\sum_{k=1}^n \frac{1}{b_k} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
次の問いに答えよ.

(1)不等式
\[ \sqrt{n} \sqrt{a^2+b^2} \leqq a+b \leqq \sqrt{m} \sqrt{a^2+b^2} \]
がすべての負でない実数$a \geqq 0$,$b \geqq 0$に対して成り立つような自然数$m$と$n$の範囲を求めよ.
(2)$m$を$2$以上の自然数,$n$を自然数とする.不等式
\[ \frac{m^{n+1}-1}{n+1}>\frac{m^n-1}{n} \]
が成り立つことを示せ.
(3)$m$を$2$以上の自然数,$n$を自然数とするとき,次の不等式
\[ \comb{mn}{n} \geqq m^n>\sum_{i=0}^{n-1}m^i \]
が成り立つことを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第4問
$1$から$9$までの自然数のそれぞれに赤か青の色を付ける操作を考える.

(1)$X$をこれら$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付けるとき,$X$に属するすべての数がすべて同じ色である確率を求めよ.
(2)一般に,ある試行における$3$つの事象$A,\ B,\ C$について,
\[ P(A \cup B \cup C) \leqq P(A)+P(B)+P(C) \]
が成り立つことを示せ.ここで$P(A)$は事象$A$が起こる確率である.
(3)$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合が$3$つある.それを$X,\ Y,\ Z$とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付ける操作をしたとき,$X,\ Y,\ Z$のどれにも両方の色の数が含まれる確率が$0$ではないことを示せ.ただし,$X \cap Y$,$Y \cap Z$,$Z \cap X$は空集合とは限らない.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第1問
直線$L$を$2x+y=4n$とする.ただし,$n$は自然数とする.原点を$\mathrm{O}$とし,直線$L$と$x$軸との交点を$\mathrm{A}$,直線$L$と$y$軸との交点を$\mathrm{B}$とした三角形$\mathrm{OAB}$を考える.以下の問いに答えよ.

(1)交点$\mathrm{A}$および交点$\mathrm{B}$の座標をそれぞれ求めよ.
(2)直線$M$を$x=k$(ただし$k=0,\ 1,\ \cdots,\ 2n$)とするとき,直線$L$と直線$M$の交点$\mathrm{P}$の座標を求めよ.
(3)$(2)$の直線$M$上の格子点($x$座標および$y$座標がともに整数である点)のうち,三角形$\mathrm{OAB}$の周上および内部にある格子点の総数$T_k$を求めよ.
(4)三角形$\mathrm{OAB}$の周上にある格子点および内部にある格子点の総数$T_n$を求めよ.
(5)三角形$\mathrm{OAB}$の面積$S_n$を求めよ.また,$(4)$で得られた格子点の総数$T_n$と面積$S_n$の比に関する次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{T_n}{S_n} \]
浜松医科大学 国立 浜松医科大学 2015年 第1問
数列$\{a_n\}$は初項$\displaystyle a_1=\frac{1}{3}$および漸化式
\[ (n+2)a_n-2(n+1)a_{n+1}+(n+1)a_na_{n+1}=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.以下の問いに答えよ.

(1)$a_2$を求めよ.
(2)すべての自然数$n$について$a_n \neq 0$が成り立つことを証明せよ.
(3)数列$\{a_n\}$の一般項を求めよ.
(4)$\displaystyle S_n=\sum_{k=1}^n a_k$とする.このとき,すべての自然数$n$について$S_n<2$が成り立つことを証明せよ.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
筑波大学 国立 筑波大学 2015年 第3問
$p$と$q$は正の整数とする.$2$次方程式$x^2-2px-q=0$の$2$つの実数解を$\alpha,\ \beta$とする.ただし$\alpha>\beta$とする.数列$\{a_n\}$を
\[ a_n=\frac{1}{2}(\alpha^{n-1}+\beta^{n-1}) \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.ただし$\alpha^0=1$,$\beta^0=1$と定める.

(1)すべての自然数$n$に対して,$a_{n+2}=2pa_{n+1}+qa_n$であることを示せ.
(2)すべての自然数$n$に対して,$a_n$は整数であることを示せ.
(3)自然数$n$に対し,$\displaystyle \frac{\alpha^{n-1}}{2}$以下の最大の整数を$b_n$とする.$p$と$q$が$q<2p+1$を満たすとき,$b_n$を$a_n$を用いて表せ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。