タグ「自分」の検索結果

1ページ目:全21問中1問~10問を表示)
宮崎大学 国立 宮崎大学 2016年 第4問
$\mathrm{A}$と$\mathrm{B}$は,赤球$2$個と白球$1$個が入った袋をそれぞれ$1$つずつ持っている.次のような試行を考える.

$\mathrm{A}$と$\mathrm{B}$が,それぞれ自分の持っている袋の中から無作為に球を$1$つ選び,色を見てからもとの袋に戻す.

上の試行を$n (n \geqq 2)$回繰り返したとき,$n$回の試行の中で$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致することが少なくとも$1$回起こるが続けては起こらない確率を$P_n$とする.このとき,次の各問に答えよ.

(1)$1$回の試行で,$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致する確率を求めよ.
(2)$P_2,\ P_3$を求めよ.
(3)$n \geqq 4$のとき,
\[ P_n=\frac{4}{9}P_{n-1}+\frac{20}{81}P_{n-2}+\frac{5 \cdot 4^{n-1}}{9^n} \]
が成り立つことを示せ.
宮崎大学 国立 宮崎大学 2016年 第4問
$\mathrm{A}$と$\mathrm{B}$は,赤球$2$個と白球$1$個が入った袋をそれぞれ$1$つずつ持っている.次のような試行を考える.

$\mathrm{A}$と$\mathrm{B}$が,それぞれ自分の持っている袋の中から無作為に球を$1$つ選び,色を見てからもとの袋に戻す.

上の試行を$n (n \geqq 2)$回繰り返したとき,$n$回の試行の中で$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致することが少なくとも$1$回起こるが続けては起こらない確率を$P_n$とする.このとき,次の各問に答えよ.

(1)$1$回の試行で,$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致する確率を求めよ.
(2)$P_2,\ P_3$を求めよ.
(3)$n \geqq 4$のとき,
\[ P_n=\frac{4}{9}P_{n-1}+\frac{20}{81}P_{n-2}+\frac{5 \cdot 4^{n-1}}{9^n} \]
が成り立つことを示せ.
宮崎大学 国立 宮崎大学 2016年 第2問
$\mathrm{A}$と$\mathrm{B}$は,赤球$2$個と白球$1$個が入った袋をそれぞれ$1$つずつ持っている.次のような試行を考える.

$\mathrm{A}$と$\mathrm{B}$が,それぞれ自分の持っている袋の中から無作為に球を$1$つ選び,色を見てからもとの袋に戻す.

このとき,次の各問に答えよ.

(1)$1$回の試行で,$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致する確率を求めよ.
(2)上の試行を$3$回繰り返したとき,$3$回の試行の中で$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致することが少なくとも$1$回起こるが続けては起こらない確率を求めよ.
(3)上の試行を$4$回繰り返したとき,$4$回の試行の中のどこかで,$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致することが$2$回続けて起こり,かつ$3$回以上続けて起こらない確率を求めよ.
宮崎大学 国立 宮崎大学 2016年 第5問
$\mathrm{A}$と$\mathrm{B}$は,赤球$2$個と白球$1$個が入った袋をそれぞれ$1$つずつ持っている.次のような試行を考える.

$\mathrm{A}$と$\mathrm{B}$が,それぞれ自分の持っている袋の中から無作為に球を$1$つ選び,色を見てからもとの袋に戻す.
上の試行を$n (n \geqq 2)$回繰り返したとき,$n$回の試行の中で$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致することが少なくとも$1$回起こるが続けては起こらない確率を$P_n$とする.このとき,次の各問に答えよ.

(1)$1$回の試行で,$\mathrm{A}$と$\mathrm{B}$が取り出した球の色が一致する確率を求めよ.
(2)$P_2,\ P_3$を求めよ.
(3)$n \geqq 4$のとき,
\[ P_n=\frac{4}{9}P_{n-1}+\frac{20}{81}P_{n-2}+\frac{5 \cdot 4^{n-1}}{9^n} \]
が成り立つことを示せ.
広島大学 国立 広島大学 2015年 第5問
$n$を自然数とする.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$人が$1$個のボールをパスし続ける.最初に$\mathrm{A}$がボールを持っていて,$\mathrm{A}$は自分以外の誰かに同じ確率でボールをパスし,ボールを受けた人は,また自分以外の誰かに同じ確率でボールをパスし,以後同様にパスを続ける.$n$回パスしたとき,$\mathrm{B}$がボールを持っている確率を$p_n$とする.ここで,たとえば,$\mathrm{A} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A} \to \mathrm{E}$の順にボールをパスすれば,$4$回パスしたと考える.次の問いに答えよ.

(1)$p_1,\ p_2,\ p_3,\ p_4$を求めよ.
(2)$p_n$を求めよ.
早稲田大学 私立 早稲田大学 2015年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$人の紳士から,それぞれの帽子を$1$つずつ受けとり,それらを再び$1$人に$1$つずつ配る.帽子は必ずしも元の持ち主に戻されるわけではない.このとき,以下の問に答えよ.

(1)次の空欄にあてはまる数を解答欄に記入せよ.

帽子を配る方法は全部で$[ア]$通りある.そのうち,$\mathrm{A}$が自分の帽子を受けとるのは$[イ]$通り,$\mathrm{B}$が自分の帽子を受けとるのは同じく$[イ]$通り,$\mathrm{A}$と$\mathrm{B}$がともに自分の帽子を受けとるのは$[ウ]$通りである.したがって,$\mathrm{A}$が自分の帽子を受けとらず,かつ$\mathrm{B}$も自分の帽子を受けとらない場合は$[エ]$通りである.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が誰も自分の帽子を受けとらない場合は何通りか.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
九州大学 国立 九州大学 2014年 第4問
$\mathrm{A}$さんは$5$円硬貨を$3$枚,$\mathrm{B}$さんは$5$円硬貨を$1$枚と$10$円硬貨を$1$枚持っている.$2$人は自分が持っている硬貨すべてを一度に投げる.それぞれが投げた硬貨のうち表が出た硬貨の合計金額が多い方を勝ちとする.勝者は相手の裏が出た硬貨をすべてもらう.なお,表が出た硬貨の合計金額が同じときは引き分けとし,硬貨のやりとりは行わない.このゲームについて,以下の問いに答えよ.

(1)$\mathrm{A}$さんが$\mathrm{B}$さんに勝つ確率$p$,および引き分けとなる確率$q$をそれぞれ求めよ.
(2)ゲーム終了後に$\mathrm{A}$さんが持っている硬貨の合計金額の期待値$E$を求めよ.
九州大学 国立 九州大学 2014年 第4問
$\mathrm{A}$さんは$5$円硬貨を$3$枚,$\mathrm{B}$さんは$5$円硬貨を$1$枚と$10$円硬貨を$1$枚持っている.$2$人は自分が持っている硬貨すべてを一度に投げる.それぞれが投げた硬貨のうち表が出た硬貨の合計金額が多い方を勝ちとする.勝者は相手の裏が出た硬貨をすべてもらう.なお,表が出た硬貨の合計金額が同じときは引き分けとし,硬貨のやりとりは行わない.このゲームについて,以下の問いに答えよ.

(1)$\mathrm{A}$さんが$\mathrm{B}$さんに勝つ確率$p$,および引き分けとなる確率$q$をそれぞれ求めよ.
(2)ゲーム終了後に$\mathrm{A}$さんが持っている硬貨の合計金額の期待値$E$を求めよ.
千葉大学 国立 千葉大学 2014年 第4問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
スポンサーリンク

「自分」とは・・・

 まだこのタグの説明は執筆されていません。