タグ「線分」の検索結果

8ページ目:全1074問中71問~80問を表示)
山梨大学 国立 山梨大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$|\overrightarrow{a|}=2$,$|\overrightarrow{b|}=\sqrt{3}$,$|\overrightarrow{c|}=1$,$\overrightarrow{a} \cdot \overrightarrow{b}=2$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{3}$,$\displaystyle \overrightarrow{c} \cdot \overrightarrow{a}=\frac{4}{3}$を満たすとする.点$\mathrm{C}$から平面$\mathrm{OAB}$に垂線を下ろし,平面$\mathrm{OAB}$との交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積$V$を求めよ.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$を$4:1$に内分する点を$\mathrm{N}$とする.このとき,直線$\mathrm{CH}$と直線$\mathrm{ON}$が交わることを示せ.また,その$2$直線の交点を$\mathrm{P}$とするとき,$\mathrm{CP}:\mathrm{PH}$を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第1問
放物線$y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a>b$とする.直線$\mathrm{AB}$と放物線とで囲まれる部分の面積を$S$とする.下の問いに答えなさい.

(1)$a=b+1$とするとき,$S$を求めなさい.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$が$\displaystyle S=\frac{1}{6}$という条件を満たしながら動くとき,線分$\mathrm{AB}$の中点の軌跡を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第2問
平面内にベクトル$\overrightarrow{a}$,$\overrightarrow{b}$がある.下の問いに答えなさい.

(1)次の等式を証明しなさい.
\[ |\overrightarrow{a|+\overrightarrow{b}}^2-|\overrightarrow{a|-\overrightarrow{b}}^2=4 \overrightarrow{a} \cdot \overrightarrow{b} \]
(2)$m,\ n$を実数とするとき,次の等式を証明しなさい.
\[ |m \overrightarrow{a|+n \overrightarrow{b}}^2+mn |\overrightarrow{a|-\overrightarrow{b}}^2=(m+n)(m |\overrightarrow{a|}^2+n |\overrightarrow{b|}^2) \]
(3)$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2$,$\mathrm{OB}=4$,$\mathrm{AB}=3$とする.線分$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{C}$とするとき,線分$\mathrm{OC}$の長さを求めなさい.
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第1問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第3問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$a=2$のとき$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第3問
$a$を正の実数とする.点$\mathrm{P}$は曲線$C_a:y=e^{ax}$上を,点$\mathrm{Q}$は直線$y=x$をそれぞれ動く.このとき,次の問いに答えよ.

(1)曲線$C_a$と直線$y=x$が共有点をもたないような$a$の値の範囲を求めよ.
(2)$(1)$で求めた範囲にある$a$に対して,線分$\mathrm{PQ}$の長さの最小値を$d(a)$とする.$\mathrm{PQ}$の長さが$d(a)$となる曲線$C_a$上の点を$\mathrm{P}_a$とする.

(i) $d(a)$を求めよ.
(ii) 点$\mathrm{P}_a$における曲線$C_a$の接線の傾きを求めよ.
(iii) $a$が$(1)$で求めた範囲を動くときの点$\mathrm{P}_a$の軌跡を求め,その概形を図示せよ.

(3)$d(a)$の最大値と,そのときの$a$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2016年 第2問
関数$f(x)=x^2-4x+5$を用いて,放物線$C:y=f(x)$が定義されている.放物線$C$上の点$\mathrm{P}$の$x$座標を$t$とし,原点$\mathrm{O}(0,\ 0)$と$x$軸上の点$\mathrm{Q}(t,\ 0)$を考える.ただし,$t>0$とする.次の各問に答えなさい.

(1)線分$\mathrm{OQ}$と線分$\mathrm{PQ}$の長さの和を$t$の関数として$L(t)$で表す.

(i) $L(t)$を$t$の式で表しなさい.
(ii) $L(t)$が最小値をとるとき,$t$と$L(t)$の値をそれぞれ求めなさい.

(2)放物線$C$の頂点を$\mathrm{A}$とする.

(i) 点$\mathrm{A}$の座標を求めなさい.
(ii) 直線$\mathrm{OP}$が点$\mathrm{A}$を通るとき,直線$\mathrm{OP}$と放物線$C$で囲まれた部分の面積を求めなさい.
(iii) 直線$\mathrm{OP}$が放物線$C$の接線となるとき,$t$の値と直線$\mathrm{OP}$の方程式を求めなさい.

(3)$\triangle \mathrm{OPQ}$の面積を$t$の関数として$S_1(t)$で表す.また,直線$\mathrm{OP}$と放物線$C$および$y$軸で囲まれた部分の面積を$t$の関数として$S_2(t)$で表す.ただし,$0<t \leqq 2$とする.

(i) $S_1(t)$を$t$の式で表しなさい.また,関数$S_1(t)$の導関数$S_1^\prime(t)$を求めなさい.
(ii) $S_1(t)$の極大点と極小点をそれぞれ求めなさい.
(iii) $S_2(t)$の最大値を求めなさい.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。