タグ「絶対値」の検索結果

7ページ目:全755問中61問~70問を表示)
宮崎大学 国立 宮崎大学 2016年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(i) $\displaystyle y=\frac{x}{1+e^{\frac{1}{x}}}$

(ii) $\displaystyle y=\log \sqrt{\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}}$


(2)次の定積分の値を求めよ.


(i) $\displaystyle \int_0^2 |e^x-2| \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{3}} x \sin^2 (2x) \, dx$

(iii) $\displaystyle \int_1^e \frac{\sqrt{1+\log x}}{x} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_2^4 \frac{2x^3+x^2-2x+2}{x^4+x^2-2} \, dx$
宮崎大学 国立 宮崎大学 2016年 第3問
関数$\displaystyle f(x)=-\frac{1}{2}x^2+2 |x+1|+1$に対し,座標平面上の曲線$y=f(x)$を$C$とする.点$\mathrm{P}(t,\ f(t)) (t>-1)$における曲線$C$の接線に垂直で,点$\mathrm{P}$を通る直線を$\ell$とする.このとき,次の各問に答えよ.

(1)直線$\ell$の方程式を,$t$を用いて表せ.
(2)直線$\ell$が点$(-1,\ f(-1))$を通るとき,$t$の中で最も小さいものを求めよ.
(3)$(2)$で求めた$t$が定める直線$\ell$と曲線$C$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2016年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(i) $\displaystyle y=\frac{x}{1+e^{\frac{1}{x}}}$

(ii) $\displaystyle y=\log \sqrt{\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}}$


(2)次の定積分の値を求めよ.


(i) $\displaystyle \int_0^2 |e^x-2| \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{3}} x \sin^2 (2x) \, dx$

(iii) $\displaystyle \int_1^e \frac{\sqrt{1+\log x}}{x} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_2^4 \frac{2x^3+x^2-2x+2}{x^4+x^2-2} \, dx$
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第4問
数列$\{a_n\}$を$a_1=a_2=1$,$a_{n+2}=a_{n+1}+a_n (n=1,\ 2,\ 3,\ \cdots)$によって定める.また$\alpha$を$\displaystyle \alpha=1+\frac{1}{\alpha}$を満たす正の実数とする.次の各問いに答えよ.

(1)数列$\{b_n\}$を$\displaystyle b_n=\frac{a_{n+1}}{a_n}$で定める.$b_{n+1}$を$b_n$を用いて表せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して$b_n \geqq 1$となることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_{n+1|-\alpha} \leqq \frac{1}{\alpha} |b_n-\alpha|$となることを示せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_n-\alpha| \leqq \frac{1}{\alpha^n}$となることを示せ.
弘前大学 国立 弘前大学 2016年 第2問
次の問いに答えよ.

(1)関数$f(x)=x(x^2-4x+3)$の極値を求めよ.
(2)$k$を定数とするとき,方程式$x |x^2-4x+3|=k$の異なる実数解の個数を求めよ.
香川大学 国立 香川大学 2016年 第3問
平行四辺形$\mathrm{ABCD}$は,$\mathrm{AB}=2$,$\mathrm{AD}=3$,$\displaystyle \cos \angle \mathrm{BAD}=\frac{1}{3}$を満たしているとする.直線$\mathrm{BC}$上に$\mathrm{BC} \perp \mathrm{AP}$となる点$\mathrm{P}$をとり,直線$\mathrm{BD}$上に$\mathrm{BD} \perp \mathrm{AQ}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおくとき,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AP|}}$と$|\overrightarrow{\mathrm{AQ|}}$を求めよ.
(4)$|\overrightarrow{\mathrm{PQ|}}$を求めよ.
香川大学 国立 香川大学 2016年 第3問
平行四辺形$\mathrm{ABCD}$は,$\mathrm{AB}=2$,$\mathrm{AD}=3$,$\displaystyle \cos \angle \mathrm{BAD}=\frac{1}{3}$を満たしているとする.直線$\mathrm{BC}$上に$\mathrm{BC} \perp \mathrm{AP}$となる点$\mathrm{P}$をとり,直線$\mathrm{BD}$上に$\mathrm{BD} \perp \mathrm{AQ}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおくとき,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AP|}}$と$|\overrightarrow{\mathrm{AQ|}}$を求めよ.
(4)$|\overrightarrow{\mathrm{PQ|}}$を求めよ.
佐賀大学 国立 佐賀大学 2016年 第2問
空間に$3$点$\mathrm{A}(1,\ 2,\ 6)$,$\mathrm{B}(7,\ 0,\ 9)$,$\mathrm{C}(s,\ t,\ 0)$がある.ただし,$s,\ t$は実数とする.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を$s$と$t$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB|}}=|\overrightarrow{\mathrm{AC|}}$となるとき,$s$と$t$の関係式を求めよ.
(3)$\triangle \mathrm{ABC}$が$\angle \mathrm{BAC}={90}^\circ$の直角二等辺三角形となるとき,$s$と$t$の値を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$0$でない複素数$z$の極形式を$r(\cos \theta+i \sin \theta)$とするとき,次の複素数を極形式で表せ.ただし,$0 \leqq \theta<2\pi$とし,また$z$と共役な複素数を$\overline{z}$で表す.

(1)$-\overline{z}$

(2)$\displaystyle \frac{1}{z^2}$

(3)$z-|z|$
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。