タグ「終了」の検索結果

1ページ目:全78問中1問~10問を表示)
福井大学 国立 福井大学 2016年 第3問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)$q_n$を求めよ.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
東京大学 国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.

(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.

なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.

(1)ちょうど$5$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(3)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝する確率を求めよ.
東京大学 国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.

(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.

なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.

(1)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝したとき,$\mathrm{A}$の最後の対戦相手が$\mathrm{B}$である条件付き確率を求めよ.
金沢大学 国立 金沢大学 2016年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がそれぞれ$1$個ずつのサイコロを同時に投げ,出た目を大きさの順に$x_1 \leqq x_2 \leqq x_3$とする.$x_1=x_2=x_3$のときは,もう一度$3$人でサイコロ投げを行う.$x_1 \leqq x_2<x_3$のときは,$x_3$を出した者が勝者となり,サイコロ投げを終了する.$x_1<x_2=x_3$のときは,$x_1$を出した者は去り,残りの$2$人で異なる目が出るまでサイコロ投げを続け,大きい目を出した者が勝者となり,サイコロ投げを終了する.次の問いに答えよ.

(1)$1$回目のサイコロ投げで$\mathrm{A}$が$3$を出して勝者となる場合の数を求めよ.
(2)$1$回目のサイコロ投げで$\mathrm{A}$が勝者となる場合の数を求めよ.
(3)$1$回目のサイコロ投げで勝者が決まる場合の数を求めよ.
(4)$2$回目のサイコロ投げで勝者が決まる場合の数を求めよ.
新潟大学 国立 新潟大学 2016年 第3問
$3$が書かれたカードが$10$枚,$5$が書かれたカードが$10$枚,$10$が書かれたカードが$10$枚,全部で$30$枚のカードが箱の中にある.この中から$1$枚ずつカードを取り出していき,取り出したカードに書かれている数の合計が$10$以上になった時点で操作を終了する.ただし各カードには必ず$3,\ 5,\ 10$いずれかの数が$1$つ書かれているものとし,取り出したカードは箱の中に戻さないものとする.次の問いに答えよ.

(1)操作が終了するまでに,カードを取り出した回数が$1$回である確率を求めよ.
(2)操作が終了するまでに,カードを取り出した回数が$2$回である確率を求めよ.
(3)操作が終了したときに,取り出したカードに書かれている数の合計が$12$以上である確率を求めよ.
新潟大学 国立 新潟大学 2016年 第3問
$3$が書かれたカードが$10$枚,$5$が書かれたカードが$10$枚,$10$が書かれたカードが$10$枚,全部で$30$枚のカードが箱の中にある.この中から$1$枚ずつカードを取り出していき,取り出したカードに書かれている数の合計が$10$以上になった時点で操作を終了する.ただし各カードには必ず$3,\ 5,\ 10$いずれかの数が$1$つ書かれているものとし,取り出したカードは箱の中に戻さないものとする.次の問いに答えよ.

(1)操作が終了するまでに,カードを取り出した回数が$1$回である確率を求めよ.
(2)操作が終了するまでに,カードを取り出した回数が$2$回である確率を求めよ.
(3)操作が終了したときに,取り出したカードに書かれている数の合計が$12$以上である確率を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
福井大学 国立 福井大学 2016年 第4問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty np_n$の和を求めよ.ただし,$0 \leqq s<1$に対して$\displaystyle \lim_{n \to \infty}ns^n=0$であることを用いてもよい.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
横浜市立大学 公立 横浜市立大学 2016年 第2問
$n$枚のカードの表(おもて)面に相異なる整数値が書かれている.ただし,どのような数値が書かれているのかはあらかじめわかっていない.

はじめにすべてのカードが裏返しでおかれている.ここから$1$枚ずつ好きなカードをめくっていき,書かれている数値が$n$枚のカードの中で最大だと思ったらめくるのをやめる$1$人ゲームを考える.$n$枚のカードをすべてめくり終えてしまった場合,次にめくるカードがないのでゲームは終了である.
ゲームの勝敗は,最後にめくったカードに書かれていた数値が$n$枚のカードの中で最大であれば勝ち,そうでなければ負けとする.
$n$未満の自然数$k$について以下の戦略$S_k$を考える:
はじめの$k$枚までは必ずめくり,その$k$枚に書かれていた数値のうち最大のものを$M$とする.$k+1$枚目以降で$M$より大きな数が書かれたカードをめくったら,ただちにめくるのをやめる.

戦略$S_k$にしたがった場合に,このゲームに勝つ確率を$P_{n,k}$とする.以下の問いに答えよ.

(1)$P_{3,1}$を求めよ.
(2)$i$を$k+1$以上,$n$以下の整数とする.戦略$S_k$にしたがった場合に,ちょうど$i$枚のカードをめくって勝つ確率を求めよ.
(3)$n$が十分に大きいとき,戦略$S_k$を使ってどのくらい勝つことが出来るのかを考えてみよう.$n$に対してどのくらいの$k$を用いるかによって勝てる確率は変わる.簡単にするため,$n=3p$の場合を考える.ただし,$p$は自然数である.このとき$k=p$として,極限値
\[ \lim_{p \to \infty} P_{n,k} \]
を求めよ.
スポンサーリンク

「終了」とは・・・

 まだこのタグの説明は執筆されていません。