タグ「直線」の検索結果

27ページ目:全2462問中261問~270問を表示)
福岡大学 私立 福岡大学 2016年 第2問
$\triangle \mathrm{ABC}$内に点$\mathrm{P}$があり,直線$\mathrm{BP}$と辺$\mathrm{AC}$の交点は辺$\mathrm{AC}$を$1:2$に内分し,直線$\mathrm{CP}$と辺$\mathrm{AB}$の交点は辺$\mathrm{AB}$を$2:1$に内分する.このとき,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と表すと$(s,\ t)=[ ]$である.また,$\triangle \mathrm{ABC}$が正三角形のとき,$\cos \angle \mathrm{PAB}=[ ]$である.
福岡大学 私立 福岡大学 2016年 第6問
$f(x)=(x-1) \sqrt{-x^2+4x-3} (1 \leqq x \leqq 3)$とする.このとき,次の問いに答えよ.

(1)関数$y=f(x)$の極値を求めよ.
(2)曲線$y=f(x)$と,$2$直線$x=1$,$\displaystyle y=\frac{3 \sqrt{3}}{4}$とで囲まれる図形の面積を求めよ.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
福岡大学 私立 福岡大学 2016年 第1問
$2$直線$x+2y=1$,$(a+1)x+3ay=9$が平行になるように定数$a$の値を定めると$a=[ ]$である.このとき,$2$直線と直線$y=x$および$x$軸で囲まれた部分の面積は$[ ]$である.
福岡大学 私立 福岡大学 2016年 第3問
$\triangle \mathrm{ABC}$内に点$\mathrm{P}$があり,直線$\mathrm{BP}$と辺$\mathrm{AC}$の交点は辺$\mathrm{AC}$を$1:2$に内分し,直線$\mathrm{CP}$と辺$\mathrm{AB}$の交点は辺$\mathrm{AB}$を$2:1$に内分する.このとき,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と表すと$(s,\ t)=[ ]$である.また,$\triangle \mathrm{ABC}$が正三角形のとき,$\cos \angle \mathrm{PAB}=[ ]$である.
広島経済大学 私立 広島経済大学 2016年 第4問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$0^\circ \leqq \theta \leqq {180}^\circ$とする.$\displaystyle \cos \theta=-\frac{3}{4}$のとき,
\[ \sin \theta=\frac{\sqrt{[$31$]}}{[$32$]},\quad \tan \theta=-\frac{\sqrt{[$33$]}}{[$34$]} \]
である.
(2)$2$直線$y=-x$と$y=\sqrt{3}x$のなす角$\theta$は${[$35$]}^\circ$である.ただし,$0^\circ \leqq \theta \leqq {90}^\circ$とする.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={75}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{CA}=6$であるとき,
\[ \angle \mathrm{B}={[$36$]}^\circ,\quad \mathrm{AB}=[$37$] \sqrt{[$38$]},\quad \mathrm{BC}=[$39$]+[$40$] \sqrt{[$41$]}, \]
$\triangle \mathrm{ABC}$の外接円の半径は$[$42$] \sqrt{[$43$]}$である.
東京電機大学 私立 東京電機大学 2016年 第1問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)曲線$y=e^x$上の点$(t,\ e^t)$と直線$y=2x$の距離を$d(t)$とする.$d(t)$の最小値を求めよ.
(5)不定積分$\displaystyle \int \log 2x \, dx$を計算せよ.ただし積分定数は$C$とすること.
東京電機大学 私立 東京電機大学 2016年 第4問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(2,\ 3,\ 1)$,$\mathrm{C}(0,\ 1,\ 2)$を考える.点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.$\mathrm{H}$の座標を求めよ.
(5)$3$次方程式$x^3+x^2-2x+1=0$の$3$つの解を$a_1,\ a_2,\ a_3$とするとき,${a_1}^2+{a_2}^2+{a_3}^2$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。