タグ「直線」の検索結果

24ページ目:全2462問中231問~240問を表示)
学習院大学 私立 学習院大学 2016年 第4問
放物線$C:y=4-x^2$と$x$軸とで囲まれた部分を$D$とし,$D$の面積を$S$とする.

(1)$S$を求めよ.
(2)点$(-2,\ 0)$を通り傾き$\displaystyle \frac{4}{5}$の直線と$C$とで囲まれた部分の面積を$T$とする.$T$と$\displaystyle \frac{S}{2}$の大小を判定せよ.
(3)傾きが$\displaystyle \frac{4}{5}$であり$D$の面積を$2$等分する直線を$L$とする.$L$の方程式を求めよ.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 4)$,$\mathrm{B}(6,\ 0)$をとる.点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_1$,線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{M}$を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)点$\mathrm{M}$の座標は$([コ],\ [サ])$である.
(2)直線$\ell_1$の方程式は$y=-x+[シ]$であり,直線$\ell_2$の方程式は$y=x-[ス]$である.
(3)線分$\mathrm{OB}$の垂直二等分線と直線$\ell_2$との交点の座標は$([セ],\ [ソ])$である.
(4)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式は$x^2+y^2-[タ]x-[チ]y=0$である.
龍谷大学 私立 龍谷大学 2016年 第1問
次の問いに答えなさい.

(1)実数$\alpha,\ \beta$は,$\left\{ \begin{array}{l}
\sin \alpha+\sin \beta=0 \\
\cos \alpha+\cos \beta=1
\end{array} \right.$を満たしている.$\cos (\alpha-\beta)$を求めなさい.

(2)次の不等式が表す領域を座標平面上に図示しなさい.
\[ (4x^2+9y^2-36)(4x^2-27y)>0 \]
(3)$2$つのさいころを同時に投げる.出る目の数の積を$n$とし,直線$3x+5y=n$と$x$軸,$y$軸との交点をそれぞれ$(a,\ 0)$,$(0,\ b)$とする.$a$と$b$がどちらも自然数となる確率を求めなさい.
龍谷大学 私立 龍谷大学 2016年 第3問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA|}}=2$,$|\overrightarrow{\mathrm{OB|}}=3$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{3}{2}$を満たす.また,点$\mathrm{C}$は$\overrightarrow{\mathrm{OC}}=k (\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}})$,$\displaystyle |\overrightarrow{\mathrm{OC|}}=\frac{15}{2}$を満たす.ただし,$k>0$である.

(1)$k$を求めなさい.
(2)直線$\mathrm{AB}$上の点$\mathrm{P}$と直線$\mathrm{OB}$上の点$\mathrm{Q}$が$\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OP}}$を満たしている.$|\overrightarrow{\mathrm{OQ|}}$を求めなさい.
龍谷大学 私立 龍谷大学 2016年 第4問
曲線$y=\log x$上の点$(p,\ \log p)$における接線$\ell$が点$\mathrm{A}(0,\ 1)$を通る.

(1)$p$を求めなさい.
(2)$y=\log x$が$x$軸と交わる点を$\mathrm{B}$とする.直線$\mathrm{AB}$と$\ell$,および曲線$y=\log x$で囲まれた図形の面積を求めなさい.
東邦大学 私立 東邦大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{P}(3,\ 1)$を通る直線が円$x^2+y^2=1$上の$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$\mathrm{A}$と$\mathrm{B}$はそれぞれ第$1$象限,第$2$象限内の点である.$\mathrm{PA}=\sqrt{5}$のとき,$\displaystyle \mathrm{AB}=\frac{[ケ] \sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[シ]}{[ス]}$である.
東京女子大学 私立 東京女子大学 2016年 第3問
座標空間において$\mathrm{N}(0,\ 0,\ 1)$,$\mathrm{P}(a,\ b,\ 0)$とする.原点を中心とする半径$1$の球面と直線$\mathrm{NP}$との$\mathrm{N}$以外の交点を$\mathrm{Q}(x,\ y,\ z)$とする.このとき,以下の設問に答えよ.

(1)$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$をみたす実数$t$を$a,\ b$で表せ.
(2)$x,\ y,\ z$を,それぞれ$a,\ b$で表せ.
(3)$a,\ b$を,それぞれ$x,\ y,\ z$で表せ.
東京女子大学 私立 東京女子大学 2016年 第4問
曲線$\displaystyle y=|x^2-\displaystyle\frac{7|{2}x}+\frac{3}{2}x$を$C$とするとき,以下の設問に答えよ.

(1)曲線$C$の概形を$xy$平面上に図示せよ.
(2)曲線$C$上の$x=2$における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形の面積を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。