タグ「直線」の検索結果

15ページ目:全2462問中141問~150問を表示)
長崎大学 国立 長崎大学 2016年 第3問
以下の問いに答えよ.

(1)関数
\[ y=\frac{e^x-e^{-x}}{e^x+e^{-x}} \]
の増減を調べ,$y$のとり得る値の範囲を求めよ.また,この関数の逆関数を求めよ.
(2)定積分
\[ I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
について,$I_1,\ I_2,\ I_3$を求めよ.
(3)関数
\[ f(x)=\frac{1+\log x}{x} \quad (x>0) \]
がある.曲線$C:y=f(x)$の変曲点を$\mathrm{P}(a,\ f(a))$とする.曲線$C$と直線$x=a$,および$x$軸で囲まれた図形の面積$S$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第2問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$r$の円周上の点$\mathrm{P}$について,以下の問いに答えよ.なお,点$\mathrm{A}$の座標を$(r,\ 0)$,$\angle \mathrm{AOP}$の値を$\theta$とする.
(図は省略)

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$を通り,この円に接する接線$\ell$の方程式を求めよ.
(3)接線$\ell$上の点$\mathrm{R}$と点$\mathrm{Q}(-r,\ 0)$を結んだ線分の長さが最小になるときの点$\mathrm{R}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(4)接線$\ell$に関して,点$\mathrm{Q}$と対称な点$\mathrm{S}$の座標を求めよ.ただし,点$\mathrm{P}$は点$\mathrm{Q}$と異なるものとする.
(5)$r=1$,$\displaystyle \theta=\frac{\pi}{3}$のとき,接線$\ell$に関して,直線$y=0$と対称な直線の方程式を求めよ.
茨城大学 国立 茨城大学 2016年 第2問
$t$を$0 \leqq t \leqq 1$を満たす実数とし,関数$\displaystyle f(x)=|\cos x-t| \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$で表される曲線$y=f(x)$を$C$とする.曲線$C$と$x$軸との共有点の$x$座標を$\alpha$とする.また,$C$と$x$軸,$y$軸および直線$\displaystyle x=\frac{\pi}{2}$で囲まれた図形を$D$とし,$D$の面積を$S$とする.以下の各問に答えよ.

(1)$\displaystyle t=\frac{1}{2}$のとき,$D$を図示せよ.
(2)$S$を$\alpha$を用いて表せ.
(3)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S$の最小値とそれを与える$t$の値を求めよ.
(4)$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$V$の最小値とそれを与える$t$の値を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
山形大学 国立 山形大学 2016年 第4問
$\mathrm{AB}=\mathrm{BC}=2$,$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$とする$\triangle \mathrm{ABC}$がある.辺$\mathrm{AC}$上に$\mathrm{A}$と異なる点$\mathrm{E}$をとり,$\mathrm{E}$から辺$\mathrm{AB}$に垂線$\mathrm{EF}$を下ろし,$\mathrm{EF}=\mathrm{AF}=x (0<x \leqq 2)$とする.また,線分$\mathrm{AF}$の$\mathrm{F}$を越える延長上に$\mathrm{AG}=2 \mathrm{AF}$となる点$\mathrm{G}$をとる.$\mathrm{EF}$,$\mathrm{FG}$を$2$辺とする正方形$\mathrm{EFGH}$と$\triangle \mathrm{ABC}$の共通部分の面積を$S(x)$とするとき,次の問いに答えよ.

(1)$S(x)$を求めよ.
(2)$xy$平面において,連立不等式$0 \leqq y \leqq S(x)$,$\displaystyle x \geqq \frac{1}{2}$の表す領域$D$を考える.点$(1,\ 1)$を通り,$D$の面積を二等分する直線を$\ell$とする.

(i) $D$の面積を求めよ.
(ii) 直線$\ell$の方程式を求めよ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
鳥取大学 国立 鳥取大学 2016年 第4問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
東京学芸大学 国立 東京学芸大学 2016年 第2問
空間において,同一平面上にない$4$点を$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.線分$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とする平行四辺形を$\mathrm{OADB}$,線分$\mathrm{OA}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OAEC}$,線分$\mathrm{OB}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OBFC}$とする.下の問いに答えよ.

(1)$\triangle \mathrm{ODE}$を含む平面と直線$\mathrm{AF}$の交点を$\mathrm{G}$とするとき,ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=x$とする.点$\mathrm{O}$を中心とし,点$\mathrm{G}$を含む球面と$\triangle \mathrm{ABE}$を含む平面の交わりで得られる円の半径の最小値とそのときの$x$の値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。