タグ「男女」の検索結果

1ページ目:全9問中1問~10問を表示)
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
弘前大学 国立 弘前大学 2015年 第2問
男子$4$人と女子$4$人を円形のテーブルのまわりに無作為に配置する.次の問いに答えよ.

(1)男女が交互に並ぶ配置になる確率を求めよ.
(2)この配置を$3$回行うとき,男女が交互に並ぶ配置になる回数が$1$回または$2$回になる確率を求めよ.
愛知学院大学 私立 愛知学院大学 2015年 第1問
$4$人の女子と$4$人の男子の計$8$人を$1$列に並べるとき,順列の総数は$[ア]$であり,少なくとも一端が男子である順列の総数は$[イ]$であり,どの男子も隣り合わない順列の総数は$[ウ]$である.また,この$8$人の女子と男子を男女交互に円形に並べるとき,その並べ方の総数は$[エ]$である.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
西南学院大学 私立 西南学院大学 2014年 第2問
男子$9$人,女子$5$人の合計$14$人の中から,バレーボールの選手を$6$人選んでチームをつくる.

(1)$6$人の選び方は全部で$\kakkofour{カ}{キ}{ク}{ケ}$通りある.
(2)男子$3$人,女子$3$人となる選び方は$[コ][サ][シ]$通りある.
(3)$6$人のチームが男女混合チームとなる選び方は$\kakkofour{ス}{セ}{ソ}{タ}$通りある.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
上智大学 私立 上智大学 2012年 第3問
$10$人ずつの男女に関する条件$(\mathrm{A})$~$(\mathrm{E})$を考える.

\mon[$(\mathrm{A})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,帽子をかぶっていて腕時計をしていない人がいる.
\mon[$(\mathrm{B})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,腕時計をしていて帽子をかぶっていない人がいる.
\mon[$(\mathrm{C})$] 女性ならば帽子をかぶっておらず,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{D})$] 帽子をかぶっている男性がおり,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{E})$] 帽子をかぶっている女性がおり,かつ,帽子をかぶっている人がいるならばその人は腕時計をしている.


(1)選択肢の中から$(\mathrm{A})$であるための必要条件を全てマークせよ.例えば,「$(\mathrm{A}) \Longrightarrow (\mathrm{a})$」が真であるときは$\mathrm{a}$をマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(2)選択肢の中から$(\mathrm{B})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(3)選択肢の中から$(\mathrm{C})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(4)選択肢の中から$(\mathrm{D})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(5)選択肢の中から$(\mathrm{E})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.

選択肢:
$(\mathrm{a})$ 腕時計をしている人がいるならばその人は男性である.
$(\mathrm{b})$ 腕時計をしている男性がいる.
$(\mathrm{c})$ 腕時計をしている人がいるならばその人は女性である.
$(\mathrm{d})$ 腕時計をしている女性がいる.
$(\mathrm{e})$ 腕時計をしていない男性がいる.
$(\mathrm{f})$ 腕時計をしていない女性がいる.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の[\phantom{ア]}にあてはまる数,数式または文字等を解答用紙の所定欄に記入せよ.

(1)極限
\[ \lim_{n\to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)} \]
の値は$[ア]$である.
(2)ある囲碁大会で,$5$つの地区から男女が各$1$人ずつ選抜されて,男性$5$人と女性$5$人のそれぞれが異性を相手とする対戦を$1$回行う.その対戦組み合わせを無作為な方法で決めるとき,同じ地区同士の対戦が含まれない組み合わせが起こる確率は$[イ]$である.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{BQ}$と直線$\mathrm{CP}$の交点を$\mathrm{R}$とするとき,ベクトル$\overrightarrow{\mathrm{AR}}$をベクトル$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$で表すと$[ウ]$である.
(4)関数
\[ y= \frac{x}{\sqrt{x^2+1}+1} \]
の逆関数を表す式は$y= [エ]$で,その定義域は$[オ]$である.
スポンサーリンク

「男女」とは・・・

 まだこのタグの説明は執筆されていません。