タグ「注意」の検索結果

1ページ目:全28問中1問~10問を表示)
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$にように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
次の問いに答えよ.

(1)図のように大中小の円と直線が互いに接している.小円の半径は$4$寸,中円の半径は$9$寸であった.このとき,大円の半径は$[$55$][$56$]$寸である.(注意:図は原寸どおりではない.)
(図は省略)
(2)\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように半径$4$寸の扇形$\mathrm{AOB}$と半径$1$寸の扇形$\mathrm{COD}$が重なっている.今$\displaystyle \cos \angle \mathrm{AOB}=\frac{5}{8}$とすると,弧$\koa{$\mathrm{AB}$}$と直線$\mathrm{AD}$,$\mathrm{BC}$に接する円の半径は
\[ \frac{[$57$][$58$]}{[$59$][$60$]} \left( [$61$][$62$]-\sqrt{[$63$][$64$]} \right) \]
寸である.(注意:図は原寸どおりではない.)
\end{mawarikomi}
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
横浜市立大学 公立 横浜市立大学 2016年 第1問
以下の問いに答えよ.

(1)ある大学で$N$人の学生が数学を受験した.その得点を$x_1,\ x_2,\ \cdots,\ x_N$とする.平均値$\overline{x}$および分散$s^2$は各々

$\displaystyle \overline{x}=\frac{x_1+x_2+\cdots +x_N}{N}$
$\displaystyle s^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots +(x_N-\overline{x})^2}{N}$

で与えられる.標準偏差$s (>0)$は
\[ s=\sqrt{s^2} \]
となる.このとき$x$点を取った学生の{\bf 偏差値}は
\[ t=50+10 \times \frac{x-\overline{x}}{s} \]
で与えられる($x \in \{x_1,\ x_2,\ \cdots,\ x_N\}$).偏差値は{\bf 無単位}であることに注意せよ.
$\mathrm{Y}$大学で$N=3n$人の学生が数学を受験し,たまたま$2n$人の学生が$a$点,残りの$n$人の学生が$b$点を取ったとしよう.簡単にするために$a<b$とする.$a$点を取った学生および$b$点を取った学生の偏差値を求めよ.
(2)方程式
\[ x^2-3y^2=13 \]
の整数解を求める.簡単にするために$x>0,\ y>0$とする.まず
\[ X=ax+by,\quad Y=cx+dy \]
とおく.$a,\ b,\ c,\ d$を自然数として,$(X,\ Y)$が再び方程式
\[ X^2-3Y^2=13 \]
を満たすための組$(a,\ b,\ c,\ d)$を$1$つ求めよ.
次に,解の組$(x,\ y)$で$x>500$となる$(x,\ y)$を$1$つ求めよ.
(3)$n$を自然数とする.漸化式

$a_{n+2}-5a_{n+1}+6a_n-6n=0$
$a_1=1,\ a_2=1$

で定められる数列$\{a_n\}$の一般項を求めよ.
(4)$n$を$0$以上の整数とする.以下の不定積分を求めよ.
\[ \int \left\{ -\frac{(\log x)^n}{x^2} \right\} \, dx=\sum_{k=0}^n [ ] \]
ただし,積分定数は書かなくてよい.
東北学院大学 私立 東北学院大学 2015年 第2問
一辺の長さが$1$の正五角形$\mathrm{ABCDE}$がある.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AE}}$,$l=|\overrightarrow{\mathrm{EC}}|$とするとき,以下の問いに答えよ.
(図は省略)

(1)$\mathrm{AB}$と$\mathrm{EC}$が平行であることに注意して,$\overrightarrow{\mathrm{AC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$l$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$l$を用いて表せ.
(3)$l$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第5問
$n$を自然数とする.$k=1,\ 2,\ 3$に対して,次の条件$\mathrm{P}_k$を考える.

$\mathrm{P}_k: \quad k \leqq r \leqq n-k$を満たすすべての自然数$r$に対して,$\comb{n}{r}$は偶数である.

(1)$2 \leqq n \leqq 20$,$k=1$とする.$\mathrm{P}_1$を満たす$n$は全部で$[ア]$個ある.このうち,最大のものは$[イ][ウ]$である.
(2)$4 \leqq n \leqq 1000$,$k=2$とする.$\mathrm{P}_2$を満たす$n$は全部で$[エ][オ]$個ある.このうち,最大のものは$[カ][キ][ク]$である.
(3)$6 \leqq n \leqq {10}^{16}$,$k=3$とする.$\mathrm{P}_3$を満たす$n$は全部で$[ケ][コ][サ]$個ある.
(注意:$0.3010<\log_{10}2<0.3011$)
埼玉工業大学 私立 埼玉工業大学 2014年 第1問
実数$a,\ b$は
\[ \left\{ \begin{array}{l}
2^{2a}+5^{2b}=41 \\
2^{a-2} \cdot 5^b=5
\end{array} \right. \]
を満たす.このとき,
\[ 2^{2a}+5^{2b}=(2^a+5^b)^2-[ア] \cdot 2^a \cdot 5^b,\quad 2^{a-2} \cdot 5^b=\frac{1}{[イ]} 2^a \cdot 5^b \]
に注意すると,
\[ 2^a+5^b=[ウ],\quad 2^a \cdot 5^b=[エオ] \]
である.解と係数の関係より,$a,\ b$の値は
\[ \left\{ \begin{array}{l}
a=[カ] \\
b=[キ]
\end{array} \right. \quad \text{と} \quad \left\{ \begin{array}{l}
a=\log_2 [ク] \\
b=\log_5 [ケ]
\end{array} \right. \]
である.
青山学院大学 私立 青山学院大学 2014年 第2問
平面上に,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\mathrm{OA}=2$,$\mathrm{OB}=3$であるような三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.三角形$\mathrm{ABP}$が正三角形になるように,直線$\mathrm{AB}$に関して点$\mathrm{O}$の反対側に点$\mathrm{P}$をとる.このとき,

(1)$\displaystyle \overrightarrow{\mathrm{OM}}=\frac{[$13$]}{[$14$]} \overrightarrow{\mathrm{OA}}+\frac{[$15$]}{[$16$]} \overrightarrow{\mathrm{OB}}$である.
(2)点$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,辺$\mathrm{AB}$との交点を$\mathrm{H}$とすると,
\[ \overrightarrow{\mathrm{OH}}=\frac{[$17$]}{[$18$][$19$]} \overrightarrow{\mathrm{OA}}+\frac{[$20$]}{[$21$][$22$]} \overrightarrow{\mathrm{OB}} \]
である.
(3)$\displaystyle \mathrm{MP}=\frac{\sqrt{[$23$][$24$]}}{[$25$]}$で,$\overrightarrow{\mathrm{MP}}$と$\overrightarrow{\mathrm{OH}}$とが平行であることに注意すると,
\[ \overrightarrow{\mathrm{MP}}=\frac{[$26$] \sqrt{[$27$]}}{[$28$]} \overrightarrow{\mathrm{OA}}+\frac{\sqrt{[$29$]}}{[$30$]} \overrightarrow{\mathrm{OB}} \]
である.
スポンサーリンク

「注意」とは・・・

 まだこのタグの説明は執筆されていません。