タグ「極限」の検索結果

4ページ目:全244問中31問~40問を表示)
同志社大学 私立 同志社大学 2016年 第2問
$n$を正整数とし,$e$を自然対数の底とするとき,次の問いに答えよ.

(1)$a,\ b$を定数として,次の関数$f(x) (x>0)$の導関数$f^\prime(x)$を求めよ.
\[ f(x)=x^{n+1} \{a \cos (\pi \log x)+b \sin (\pi \log x) \} \]
(2)次の定積分の値をそれぞれ求めよ.
\[ I_n=\int_1^e x^n \cos (\pi \log x) \, dx,\quad J_n=\int_1^e x^n \sin (\pi \log x) \, dx \]
(3)次の極限値をそれぞれ求めよ.
\[ \lim_{n \to \infty} \frac{I_{n+1}}{I_n},\quad \lim_{n \to \infty} \frac{J_{n+1}}{J_n},\quad \lim_{n \to \infty} \frac{J_n}{I_n} \]
同志社大学 私立 同志社大学 2016年 第4問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{6}{\sqrt{a_n}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\displaystyle f(x)=\frac{x}{2}+\frac{6}{\sqrt{x}} (x>0)$として,次の問いに答えよ.

(1)閉区間$4 \leqq x \leqq 9$において,$f(x)$の最大値と最小値,導関数$f^\prime(x)$の最大値と最小値をそれぞれ求めよ.
(2)$4<a_n<9$を数学的帰納法を用いて示せ.
(3)$c=f(c)$を満たす正の実数$c$を求めよ.
(4)上の$(3)$で決定した$c$に対して,$\displaystyle 0<c-a_{n+1}<\frac{c-a_n}{2} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
神戸薬科大学 私立 神戸薬科大学 2016年 第6問
次の問いに答えよ.

(1)次の極限値を求めると,$\displaystyle \lim_{x \to 1} \frac{x^2+x-2}{x^3-1}=[ト]$である.
(2)次の式を満たす関数$f(x)$と定数$a$を求めると,$f(x)=[ナ]$,$a=[ニ]$である.
\[ \int_x^a f(t) \, dt=x^2-2x-3 \]
横浜市立大学 公立 横浜市立大学 2016年 第2問
$n$枚のカードの表(おもて)面に相異なる整数値が書かれている.ただし,どのような数値が書かれているのかはあらかじめわかっていない.

はじめにすべてのカードが裏返しでおかれている.ここから$1$枚ずつ好きなカードをめくっていき,書かれている数値が$n$枚のカードの中で最大だと思ったらめくるのをやめる$1$人ゲームを考える.$n$枚のカードをすべてめくり終えてしまった場合,次にめくるカードがないのでゲームは終了である.
ゲームの勝敗は,最後にめくったカードに書かれていた数値が$n$枚のカードの中で最大であれば勝ち,そうでなければ負けとする.
$n$未満の自然数$k$について以下の戦略$S_k$を考える:
はじめの$k$枚までは必ずめくり,その$k$枚に書かれていた数値のうち最大のものを$M$とする.$k+1$枚目以降で$M$より大きな数が書かれたカードをめくったら,ただちにめくるのをやめる.

戦略$S_k$にしたがった場合に,このゲームに勝つ確率を$P_{n,k}$とする.以下の問いに答えよ.

(1)$P_{3,1}$を求めよ.
(2)$i$を$k+1$以上,$n$以下の整数とする.戦略$S_k$にしたがった場合に,ちょうど$i$枚のカードをめくって勝つ確率を求めよ.
(3)$n$が十分に大きいとき,戦略$S_k$を使ってどのくらい勝つことが出来るのかを考えてみよう.$n$に対してどのくらいの$k$を用いるかによって勝てる確率は変わる.簡単にするため,$n=3p$の場合を考える.ただし,$p$は自然数である.このとき$k=p$として,極限値
\[ \lim_{p \to \infty} P_{n,k} \]
を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第12問
次の極限値を求めよ.
\[ \lim_{x \to 0} \frac{\sqrt{1-\tan 2x}-\sqrt{1+\tan 2x}}{x} \]
大阪大学 国立 大阪大学 2015年 第1問
自然数$n$に対して関数$f_n(x)$を
\[ f_n(x)=\frac{x}{n(1+x)} \log \left( 1+\frac{x}{n} \right) \quad (x \geqq 0) \]
で定める.以下の問いに答えよ.

(1)$\displaystyle \int_0^n f_n(x) \, dx \leqq \int_0^1 \log (1+x) \, dx$を示せ.
(2)数列$\{I_n\}$を
\[ I_n=\int_0^n f_n(x) \, dx \]
で定める.$0 \leqq x \leqq 1$のとき$\log (1+x) \leqq \log 2$であることを用いて数列$\{I_n\}$が収束することを示し,その極限値を求めよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることは用いてよい.
金沢大学 国立 金沢大学 2015年 第3問
関数$y=\log_3 x$とその逆関数$y=3^x$のグラフが,直線$y=-x+s$と交わる点をそれぞれ$\mathrm{P}(t,\ \log_3 t)$,$\mathrm{Q}(u,\ 3^u)$とする.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の中点の座標は$\displaystyle \left( \frac{s}{2},\ \frac{s}{2} \right)$であることを示せ.
(2)$s,\ t,\ u$は$s=t+u$,$u=\log_3 t$を満たすことを示せ.
(3)$\displaystyle \lim_{t \to 3} \frac{su-k}{t-3}$が有限な値となるように,定数$k$の値を定め,その極限値を求めよ.
金沢大学 国立 金沢大学 2015年 第4問
$a>1$とする.無限等比級数
\[ a+ax(1-ax)+ax^2(1-ax)^2+ax^3(1-ax)^3+\cdots \]
が収束するとき,その和を$S(x)$とする.次の問いに答えよ.

(1)この無限等比級数が収束するような実数$x$の値の範囲を求めよ.また,そのときの$S(x)$を求めよ.
(2)$x$が$(1)$で求めた範囲を動くとき,$S(x)$のとり得る値の範囲を求めよ.
(3)$\displaystyle I(a)=\int_0^{\frac{1}{a}} S(x) \, dx$とおくとき,極限値$\displaystyle \lim_{a \to \infty} I(a)$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第2問
$2$つの関数
\[ f(x)=\frac{2}{2x+3},\quad g(x)=\frac{2x+1}{-x+2} \]
がある.

(1)関数$g(x)$の逆関数$g^{-1}(x)$を求めよ.
(2)合成関数$g^{-1}(f(g(x)))$を求めよ.
(3)実数$c$が無理数であるとき,$f(c)$は無理数であることを証明せよ.
(4)次の条件によって定められる数列$\{a_n\}$の一般項を求めよ.
\[ a_1=g(\sqrt{2}),\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)$(4)$で定められた数列$\{a_n\}$の極限$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
東京工業大学 国立 東京工業大学 2015年 第1問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{4a_n-9}{a_n-2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.また数列$\{b_n\}$を
\[ b_n=\frac{a_1+2a_2+\cdots +na_n}{1+2+\cdots +n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)すべての$n$に対して,不等式$\displaystyle b_n \leqq 3+\frac{4}{n+1}$が成り立つことを示せ.
(3)極限値$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。