タグ「根号」の検索結果

5ページ目:全1904問中41問~50問を表示)
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)次の極限を求めなさい.
\[ \lim_{n \to \infty} (\sqrt{(n+1)(n+3)}-\sqrt{n(n+2)}) \]
(2)複素数平面上の$2$点$\alpha=4-2i,\ \beta=3-3i$に対して,次の問いに答えなさい.

(i) 点$\alpha$を点$\beta$の周りに${30}^\circ$回転した点を表す複素数$\gamma$を求めなさい.
(ii) $\beta^6$の値を求めなさい.

(3)三角形$\mathrm{ABC}$があり$\mathrm{AB}=5$,$\mathrm{AC}=3$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{3}$とする.点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とする.

(i) ベクトル$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表しなさい.
(ii) 線分$\mathrm{AH}$の長さを求めなさい.
千葉大学 国立 千葉大学 2016年 第4問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第6問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
千葉大学 国立 千葉大学 2016年 第5問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
徳島大学 国立 徳島大学 2016年 第4問
媒介変数$\theta$を用いて$x=\sqrt{2} \cos \theta$,$y=\sqrt{3} \sin \theta (0 \leqq \theta \leqq 2\pi)$で表される曲線を$C$とする.

(1)$C$と$x$軸との交点の座標を求めよ.また,$C$と$y$軸との交点の座標を求めよ.
(2)$C$上の点$(x,\ y)$に対して,$x-y$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
(3)$C$上の点$(x,\ y)$に対して,$(x+y)(x-y)$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。