タグ「根号」の検索結果

26ページ目:全1904問中251問~260問を表示)
大阪大学 国立 大阪大学 2015年 第3問
以下の問いに答えよ.

(1)$\sqrt{2}$と$\sqrt[3]{3}$が無理数であることを示せ.
(2)$p,\ q,\ \sqrt{2}p+\sqrt[3]{3}q$がすべて有理数であるとする.そのとき,$p=q=0$であることを示せ.
大阪大学 国立 大阪大学 2015年 第1問
実数$x,\ y$が$|x| \leqq 1$と$|y| \leqq 1$を満たすとき,不等式
\[ 0 \leqq x^2+y^2-2x^2y^2+2xy \sqrt{1-x^2} \sqrt{1-y^2} \leqq 1 \]
が成り立つことを示せ.
一橋大学 国立 一橋大学 2015年 第4問
$xyz$空間において,原点を中心とする$xy$平面上の半径$1$の円周上を点$\mathrm{P}$が動き,点$(0,\ 0,\ \sqrt{3})$を中心とする$xz$平面上の半径$1$の円周上を点$\mathrm{Q}$が動く.

(1)線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
広島大学 国立 広島大学 2015年 第2問
$n$を自然数とし,$p_n,\ q_n$を実数とする.ただし,$p_1,\ q_1$は$p_1^2-4q_1=4$を満たすとする.$2$次方程式$x^2-p_nx+q_n=0$は異なる実数解$\alpha_n,\ \beta_n$をもつとする.ただし,$\alpha_n<\beta_n$とする.$c_n=\beta_n-\alpha_n$とおくとき,数列$\{c_n\}$は
\[ \frac{c_{n+1}}{c_n}=\frac{n+2}{\sqrt{n(n+1)}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$r_n=\log_2 (n \sqrt{n}+\sqrt{n})$とするとき,$\displaystyle \frac{n+2}{\sqrt{n(n+1)}}$を$r_n,\ r_{n+1}$を用いて表せ.
(2)$c_n$を$n$の式で表せ.
(3)$p_n=n \sqrt{n}$であるとき,$q_n$を$n$の式で表せ.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第2問
$2$つの関数
\[ f(x)=\frac{2}{2x+3},\quad g(x)=\frac{2x+1}{-x+2} \]
がある.

(1)関数$g(x)$の逆関数$g^{-1}(x)$を求めよ.
(2)合成関数$g^{-1}(f(g(x)))$を求めよ.
(3)実数$c$が無理数であるとき,$f(c)$は無理数であることを証明せよ.
(4)次の条件によって定められる数列$\{a_n\}$の一般項を求めよ.
\[ a_1=g(\sqrt{2}),\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)$(4)$で定められた数列$\{a_n\}$の極限$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
九州大学 国立 九州大学 2015年 第3問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球がある.下の概略図のように,$y$軸の負の方向から仰角$\displaystyle \frac{\pi}{6}$で太陽光線が当たっている.この太陽光線はベクトル$(0,\ \sqrt{3},\ -1)$に平行である.球は光を通さないものとするとき,以下の問いに答えよ.
(図は省略)

(1)球の$z \geqq 0$の部分が$xy$平面上につくる影を考える.$k$を$-1<k<1$を満たす実数とするとき,$xy$平面上の直線$x=k$において,球の外で光が当たらない部分の$y$座標の範囲を$k$を用いて表せ.
(2)$xy$平面上において,球の外で光が当たらない部分の面積を求めよ.
(3)$z \geqq 0$において,球の外で光が当たらない部分の体積を求めよ.
広島大学 国立 広島大学 2015年 第2問
座標平面上の放物線
\[ C_n:y=x^2-p_nx+q_n \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.ただし,$p_n,\ q_n$は
\[ p_1^2-4q_1=4,\quad p_n^2-4q_n>0 \qquad (n=2,\ 3,\ 4,\ \cdots) \]
を満たす実数とする.$C_n$と$x$軸との二つの交点を結ぶ線分の長さを$\ell_n$とする.また,$C_n$と$x$軸で囲まれた部分の面積$S_n$は
\[ \frac{S_{n+1}}{S_n}=\left( \frac{n+2}{\sqrt{n(n+1)}} \right)^3 \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$C_n$の頂点の$y$座標を$\ell_n$を用いて表せ.
(2)数列$\{\ell_n\}$の一般項を求めよ.
(3)$p_n=n \sqrt{n} (n=1,\ 2,\ 3,\ \cdots)$であるとき,$\displaystyle \lim_{n \to \infty} n \log \left( -\frac{2q_n}{n^2} \right)$を求めよ.ただし,$\log x$は$x$の自然対数である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。