タグ「根号」の検索結果

24ページ目:全1904問中231問~240問を表示)
首都大学東京 公立 首都大学東京 2016年 第1問
$a$と$b$を$0 \leqq a \leqq 1$,$0 \leqq b<1$をみたす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=a,\quad a_{n+1}=\frac{1}{2}({a_n}^2+b) \quad (n=1,\ 2,\ 3,\ \cdots) \]
$c=1-\sqrt{1-b}$とおく.以下の問いに答えなさい.

(1)$0 \leqq a_n \leqq 1$が成り立つことを示しなさい.
(2)$\displaystyle a_{n+1}-c=\frac{1}{2}(a_n+c)(a_n-c)$が成り立つことを示しなさい.
(3)$\displaystyle \lim_{n \to \infty}a_n=c$が成り立つことを示しなさい.
広島市立大学 公立 広島市立大学 2016年 第1問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{2x+5}{x+2} (0 \leqq x \leqq 2)$の逆関数を求めよ.また,その定義域を求めよ.
(2)次の関数の導関数を求めよ.
\[ y=\frac{e^{\frac{x}{2}}}{\sqrt{\sin x}} \]
(3)次の不定積分,定積分を求めよ.


(i) $\displaystyle \int \frac{\cos^3 x}{\sin^2 x} \, dx$

(ii) $\displaystyle \int_0^{\frac{1}{2}} \frac{x}{(2x+1)^2} \, dx$
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
尾道市立大学 公立 尾道市立大学 2016年 第4問
関数$f(\theta)=\sqrt{2}(\sin \theta+\sqrt{3} \cos \theta)-\cos \theta(\sqrt{3} \sin \theta+\cos \theta)$について次の問いに答えなさい.ただし$0^\circ \leqq \theta \leqq {90}^\circ$とする.

(1)$t=\sin \theta+\sqrt{3} \cos \theta$とおくとき,$t$の値の取りうる範囲を求めなさい.
(2)$\cos \theta (\sqrt{3} \sin \theta+\cos \theta)$を$t$を用いて表しなさい.
(3)関数$f(\theta)$を$t$を用いて表したものを$g(t)$とするとき,$g(t)$の最大値と最小値,および最大値と最小値を与える$t$の値を求めなさい.
(4)関数$f(\theta)$の最大値と最小値,および最大値と最小値を与える$\theta$の値を求めなさい.
富山県立大学 公立 富山県立大学 2016年 第3問
次の問いに答えよ.

(1)$x>0$,$y>0$のとき,不等式$\displaystyle \frac{x+y}{2} \geqq \sqrt{xy}$を証明せよ.また,等号が成り立つときを調べよ.

(2)$a>0$,$b>0$,$c>0$で,$a \neq 1$,$c \neq 1$のとき,等式$\displaystyle \log_a b=\frac{\log_c b}{\log_c a}$を証明せよ.

(3)$p>1$,$q>1$のとき,不等式$\log_p q+\log_q p \geqq 2$を証明せよ.また,等号が成り立つときを調べよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2016年 第2問
$t$を実数とし,$a=t^3+2(2+\sqrt{6})t^2+3(1+2 \sqrt{6})t+2(2+\sqrt{6})$とする.点$(2,\ -2)$を通り,傾き$a$の直線を$\ell$とする.$\ell$と放物線$y=x^2$が交わらない$t$の範囲を求めよ.
会津大学 公立 会津大学 2016年 第1問
次の問いに答えよ.

(1)次の計算をせよ.ただし,$i$は虚数単位である.


(i) $\displaystyle \int_1^e x^9 \log x \, dx=[イ]$

(ii) $\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \cos \left( \frac{k\pi}{2n} \right)=[ロ]$

(iii) $(-1+i)^{21}=[ハ]$


(2)$1333$と$1147$の最大公約数は$[ニ]$である.
(3)方程式$8^x+4^x=9 \times 2^x+9$の解は$x=[ホ]$である.
(4)$0 \leqq x \leqq \pi$において関数$y=2 \sin^2 x+2 \cos x+1$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)$\triangle \mathrm{ABC}$において,$|\overrightarrow{\mathrm{AC|}}=6$,$|\overrightarrow{\mathrm{BC|}}=\sqrt{13}$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=24$であるとき,$|\overrightarrow{\mathrm{AB|}}=[チ]$であり,$\triangle \mathrm{ABC}$の面積は$[リ]$である.
九州歯科大学 公立 九州歯科大学 2016年 第1問
次の問いに答えよ.

(1)$5 \sin \theta \cos \theta=2$のとき,$\displaystyle A=\tan \theta+\frac{1}{\tan \theta}$,$B=(\sin \theta)^4+(\cos \theta)^4$,$C=(\sin \theta)^8+(\cos \theta)^8$の値を求めよ.
(2)等比数列$\{a_n\}$の初項を$a_1=\alpha$,公比を$r$とする.自然数$n$に対して,$b_n=\log_3 a_n$とおく.数列$\{b_n\}$が初項$b_1=4$,公差$d=-2$の等差数列となるとき,$\alpha$と$r$の値を求めよ.また,$\displaystyle \beta=8 \sum_{n=1}^{\infty} a_n$の値を求めよ.ただし,$\alpha>0$,$r>0$とする.
(3)定積分$\displaystyle I=\int_{-2}^3 (3 \sqrt{x^4-6x^2+9}-4x) \, dx$の値を求めよ.
富山県立大学 公立 富山県立大学 2016年 第4問
$k$は正の整数とする.定積分$\displaystyle I_k=\int_k^{k+1} \frac{1}{\sqrt{x}} \, dx$について,次の問いに答えよ.

(1)$\displaystyle S_n=\sum_{k=1}^n I_k$とする.$S_1,\ S_2,\ S_3$を求めよ.

(2)不等式$\displaystyle \frac{1}{\sqrt{k+1}}<I_k<\frac{1}{\sqrt{k}}$が成り立つことを示せ.

(3)$\displaystyle 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{100}}$の整数部分を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2016年 第3問
関数$f(x)=\sqrt{3} \sin x-\cos x$および$g(x)=\sin x+\sqrt{3} \cos x$がある.以下の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲において,曲線$\displaystyle y=\frac{g(x)}{f(x)}$のグラフをかけ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$の交点の座標を求めよ.
(3)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$,および$x$軸とで囲まれた部分の面積を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。