タグ「根号」の検索結果

21ページ目:全1904問中201問~210問を表示)
東京薬科大学 私立 東京薬科大学 2016年 第4問
$2$つの動点$\mathrm{A}$,$\mathrm{B}$は,一辺の長さが$1$の立方体の辺上を,毎秒$1$の速さで,次の規則にしたがって移動する.


\mon[$\lbrack$規則$1 \rbrack$] 最初は同じ頂点にあり,同時に移動を開始する.
\mon[$\lbrack$規則$2 \rbrack$] どの頂点からも,$1$秒で移動可能な$3$つの頂点のいずれかに確率$\displaystyle \frac{1}{3}$で移動する.

自然数$n$について,移動を開始してから$n$秒後における$2$点$\mathrm{A}$,$\mathrm{B}$間の距離が$\sqrt{2}$となる確率を$P_n$とする.以下の問に答えよ.


(1)$\displaystyle P_1=\frac{[ヘ]}{[ホ]},\ P_2=\frac{[マミ]}{[ムメ]}$である.

(2)$P_n$と$P_{n+1}$の関係は
\[ P_{n+1}=\frac{[モ]}{[ヤ]} P_n+\frac{[ユ]}{[ヨ]} \quad (n=1,\ 2,\ \cdots) \]
である.
(3)$\displaystyle P_n=\frac{[ラ]}{[リ]} \left( 1-\frac{[ル]}{{[レ]}^n} \right) (n=1,\ 2,\ \cdots)$である.
福岡大学 私立 福岡大学 2016年 第6問
$f(x)=(x-1) \sqrt{-x^2+4x-3} (1 \leqq x \leqq 3)$とする.このとき,次の問いに答えよ.

(1)関数$y=f(x)$の極値を求めよ.
(2)曲線$y=f(x)$と,$2$直線$x=1$,$\displaystyle y=\frac{3 \sqrt{3}}{4}$とで囲まれる図形の面積を求めよ.
広島経済大学 私立 広島経済大学 2016年 第4問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CD}=3$,$\angle \mathrm{ABC}={60}^\circ$である.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)対角線$\mathrm{AC}$の長さは$[$31$]$である.
(2)辺$\mathrm{AD}$の長さは$[$32$]$である.

(3)円の半径は$\displaystyle \frac{[$33$] \sqrt{[$34$]}}{[$35$]}$である.

(4)四角形$\mathrm{ABCD}$の面積は$\displaystyle \frac{[$36$] \sqrt{[$37$]}}{[$38$]}$である.
広島女学院大学 私立 広島女学院大学 2016年 第1問
$\displaystyle \frac{1}{2 \sqrt{3}+\sqrt{5}+\sqrt{7}}$の分母を有理化せよ.$[$1$]$
広島女学院大学 私立 広島女学院大学 2016年 第3問
$3+3 \sqrt{3}$の整数部分を$a$,小数部分を$b$とおく.このとき,次の問いに答えよ.

(1)$a$の値を求めよ.$[$3$]$
(2)$b$の値を求めよ.$[$4$]$

(3)$\displaystyle b+\frac{1}{b}$の値を求めよ.$[$5$]$

(4)$\displaystyle b^2+\frac{1}{b^2}$の値を求めよ.$[$6$]$
東京薬科大学 私立 東京薬科大学 2016年 第5問
$x$の関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{cl}
ax & (x \leqq 1) \\
(4-a)x+2(a-2) & (1<x) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
と定義する.ただし,$a$は$0<a<1$を満たす実数である.

(1)$y=f(x)$のグラフと,放物線$y=x^2$の共有点の個数は$[ロ]$である.このうち,$a$の値によらない共有点の座標は,$([ワ],\ [ヲ])$,$([ン],\ [あ])$である.ただし,$[ワ]<[ン]$とする.
(2)関数$y=f(x)$のグラフと,放物線$y=x^2$によって囲まれる図形の面積の総和を$S(a)$とすると,
\[ S(a)=\frac{[い]}{[う]}a^3-a+\frac{[え]}{[お]} \]
である.
(3)$S(a)$は$\displaystyle a=\frac{\sqrt{[か]}}{[き]}$のとき,最小値$\displaystyle \frac{[く]-\sqrt{[け]}}{[こ]}$をとる.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
広島経済大学 私立 広島経済大学 2016年 第3問
$a$を定数として,$2$次関数$y=x^2+3ax+6-2a$とそのグラフを考える.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$a=1$のとき,この関数のグラフの頂点の座標は$\displaystyle \left( -\displaystyle\frac{[$16$]}{[$17$]},\ \displaystyle\frac{[$18$]}{[$19$]} \right)$である.
(2)この関数のグラフが$x$軸と接するとき,$\displaystyle a=\frac{-[$20$] \pm [$21$] \sqrt{[$22$]}}{[$23$]}$である.
(3)$x=-2$のとき,この関数は最小値をとる.このとき,$\displaystyle a=\frac{[$24$]}{[$25$]}$,最小値は$\displaystyle -\frac{[$26$]}{[$27$]}$である.
(4)この関数の最小値が$-7$であるとき,$a=[$28$]$または$\displaystyle a=-\frac{[$29$]}{[$30$]}$である.
広島経済大学 私立 広島経済大学 2016年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)全体集合$U$と,その部分集合$A,\ B$について$n(U)=140$,$n(A)=80$,$n(B)=70$,$n(A \cap B)=20$のとき,次の個数を求めよ.

(i) $n(A \cup \overline{B})=[$1$]$である.
(ii) $n(\overline{A} \cap \overline{B})=[$2$]$である.

(2)$\sqrt{630n}$が自然数になるような最小の自然数$n$は$n=[$3$]$である.

(3)$\displaystyle \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}$の整数部分を$a$,小数部分を$b$とする.

このとき,$a=[$4$]$,$b=\sqrt{[$5$]}-[$6$]$である.

また,$\displaystyle \frac{10a}{b}=[$7$] \sqrt{[$8$]}+[$9$]$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。