タグ「条件」の検索結果

4ページ目:全636問中31問~40問を表示)
埼玉大学 国立 埼玉大学 2016年 第1問
$a$を実数とする.$x$の方程式
\[ \log_2 (x-3)=\log_4 (2x-a) \]
が異なる$2$つの実数解をもつための$a$の条件を求めなさい.
福島大学 国立 福島大学 2016年 第2問
関数$y=x^3-x$のグラフを$C$とする.

(1)$C$上の点$(t,\ t^3-t)$における$C$の接線の方程式を求めなさい.
(2)$C$上の$2$点$(t,\ t^3-t)$および$(s,\ s^3-s)$における$C$の接線が一致するのは$t=s$のときに限ることを示しなさい.
(3)$C$上にない点$\mathrm{A}(a,\ b)$から$C$へ引ける接線の数がちょうど$2$本となるとき,$a,\ b$がみたす条件を求めなさい.
(4)$(3)$の$2$本の接線が直交するときの$a,\ b$の値を求めなさい.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$a,\ b,\ c$および$d$は実数で,$a>0$,$b<0$,$d \neq 0$とする.また
\[ f(x)=ax+b,\quad g(x)=x^2+cx+d \]
とおく.$xyz$空間内に$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$があり,点$\mathrm{O}$は原点を表す.点$\mathrm{P}_0(-4,\ 0,\ 4 \sqrt{3})$は定点で,$\mathrm{P}_1$と$\mathrm{P}_2$はそれぞれ実数$t$の値に応じて定まる点$\mathrm{P}_1(-t,\ f(t),\ 2 \sqrt{3})$,$\mathrm{P}_2(t,\ g(t),\ 0)$である.この$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$が次の$3$条件をみたしているとき,定数$a,\ b,\ c,\ d$の値をすべて求めなさい.


(i) $t=0$のとき,ベクトル$\overrightarrow{\mathrm{OP}}_1$と$\overrightarrow{\mathrm{OP}}_2$のなす角は$\displaystyle \frac{\pi}{3}$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}_1$の長さの最小値は$\sqrt{14}$である.
(iii) 点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$は,$t=1$および$t=-3$のとき,それぞれ同一平面上にある.
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
福島大学 国立 福島大学 2016年 第2問
関数$y=x^3-x$のグラフを$C$とする.

(1)$C$上の点$(t,\ t^3-t)$における$C$の接線の方程式を求めなさい.
(2)$C$上の$2$点$(t,\ t^3-t)$および$(s,\ s^3-s)$における$C$の接線が一致するのは$t=s$のときに限ることを示しなさい.
(3)$C$上にない点$\mathrm{A}(a,\ b)$から$C$へ引ける接線の数がちょうど$2$本となるとき,$a,\ b$がみたす条件を求めなさい.
(4)$(3)$の$2$本の接線が直交するときの$a,\ b$の値を求めなさい.
鳥取大学 国立 鳥取大学 2016年 第1問
数列$\{a_n\}$を以下のように定める.
\[ 1^2,\ 1^2+3^2,\ 1^2+3^2+5^2,\ \cdots,\ 1^2+3^2+5^2+\cdots +(2n-1)^2,\ \cdots \]
また,数列$\{b_n\}$を以下のように定める.
\[ 2^2,\ 2^2+4^2,\ 2^2+4^2+6^2,\ \cdots,\ 2^2+4^2+6^2+\cdots +(2n)^2,\ \cdots \]
このとき,以下の問いに答えよ.ただし,$n$は自然数とする.

(1)数列$\{a_n\}$の第$n$項を$n$を用いて表せ.
(2)数列$\{a_n-b_n\}$の第$n$項を$n$を用いて表せ.
(3)$c_n=a_{n+1}-b_n$とおくとき,$c_n$が$6$の倍数となるための$n$の条件を求めよ.
千葉大学 国立 千葉大学 2016年 第6問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
千葉大学 国立 千葉大学 2016年 第5問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
熊本大学 国立 熊本大学 2016年 第1問
$1$辺の長さ$1$の正四面体$\mathrm{OABC}$を考える.$\displaystyle 0<s<\frac{1}{2}$に対し$\mathrm{OA}$を$s:(1-s)$に内分する点を$\mathrm{P}$とし,$0<t<1$に対し$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PQ}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ s,\ t$を用いて表せ.
(2)$\angle \mathrm{BPQ}={90}^\circ$であるとき,$t$を$s$を用いて表せ.
(3)$(2)$の条件の下で,$t$の最大値とそのときの$s$の値を求めよ.
(4)$(3)$で求めた$s,\ t$に対して,$\mathrm{PQ}^2$を求めよ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。