タグ「最小値」の検索結果

4ページ目:全1222問中31問~40問を表示)
千葉大学 国立 千葉大学 2016年 第4問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
関数$f(x)=\langle\!\langle x \rangle\!\rangle-2 \langle\!\langle x-1 \rangle\!\rangle+\langle\!\langle x-2 \rangle\!\rangle$を考える.

ここで,実数$u$に対して$\displaystyle \langle\!\langle u \rangle\!\rangle=\frac{u+|u|}{2}$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$g(x)$の最大値を求めよ.

(3)$(2)$の$g(x)$に対して,$\displaystyle p(s)=\int_0^3 (x-s)^2 g(x) \, dx$とおくとき,$p(s)$の最小値を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第1問
次の$[ ]$の中を適当に補え.

(1)$x$に関する方程式$(k^2-4k+3)x^2-4x+1=0$が異なる$2$つの実数解を持つような整数$k$は,全部で$[ ]$個である.
(2)不等式$\displaystyle \log_4(7x+1)<\frac{1}{2}+\frac{1}{2} \log_2 (2x+9)$を解くと$[ ]$である.
(3)$0 \leqq \theta \leqq \pi$のとき,$4 \sin^3 \theta+\cos^2 \theta-2 \sin \theta+1$の最大値$M$,最小値$m$を求めると$(M,\ m)=[ ]$である.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。