タグ「最大値」の検索結果

11ページ目:全1143問中101問~110問を表示)
愛知工業大学 私立 愛知工業大学 2016年 第1問
次の$[ ]$を適当に補え.$(6)$,$(7)$は選択問題である.

(1)$a$を定数とする.不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす$x$の範囲は$[ア]$である.また,不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす整数$x$が$x=2$だけであるような$a$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=3,\quad a_{n+1}-a_n=2(3^n-n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,$a_4=[ウ]$であり,$a_n=[エ]$である.
(3)$\displaystyle \log_2(4-x)+\log_4(x-1)=\frac{1}{2}$をみたす$x$は$x=[オ]$である.
(4)$a$を定数とし,$f(x)=x^3-3x^2-9x+a$とする.区間$-2 \leqq x \leqq 0$における$f(x)$の最小値が$5$であるとき,$a=[カ]$である.またこのとき,区間$-2 \leqq x \leqq 0$における$f(x)$の最大値は$[キ]$である.
(5)$\displaystyle z=\frac{1+i}{\sqrt{3}+i}$とする.$z^n$が実数となる最小の自然数$n$は$n=[ク]$であり,このとき,$z^n=[ケ]$である.ただし,$i$は虚数単位である.
(6)$1$枚の硬貨を投げ,表が出たときは白球$1$個を壺に入れ,裏が出たときは黒球$1$個を壺に入れる.硬貨を$3$回投げて壺に$3$個の球が入っている.

(i) 壺に白球$1$個と黒球$2$個が入っている確率は$[コ]$である.
(ii) 壺の中から$2$個の球を同時に取り出したとき,それが白球$1$個と黒球$1$個である確率は$[サ]$である.

(7)等式$\displaystyle \frac{1}{x}+\frac{5}{y}=1$をみたす自然数$x,\ y$の組は$(x,\ y)=[シ]$である.
名城大学 私立 名城大学 2016年 第3問
$1$個のさいころを$3$回投げるとき,出る目の最大値を$m$とする.ただし,すべての目が等しいときは,それを$m$とする.

(1)$m=4$となる確率を求めよ.
(2)$m=k$となる確率を$p_k$とするとき,$p_k$を$k$を用いて表せ.ただし,$2 \leqq k \leqq 6$とする.
(3)$(2)$で求めた$p_k$を最大にする$k$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
津田塾大学 私立 津田塾大学 2016年 第1問
次の問に答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,
\[ \sin \left( x+\frac{\pi}{3} \right)+\cos \left( x-\frac{\pi}{3} \right) \]
の最大値と最小値を求めよ.
(2)空間内の$2$点$(-2,\ 5,\ -1)$,$(2,\ 1,\ 3)$を通る直線の,$x \geqq 0$,$y \geqq 0$,$z \geqq 0$を同時に満たす部分の長さを求めよ.
(3)$\mathrm{TSUDAJUKU}$という単語に使われている$9$文字から$4$文字を選び順列を作る.$\mathrm{U}$という文字がちょうど$2$文字含まれる順列は何通りあるか.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
津田塾大学 私立 津田塾大学 2016年 第2問
$1$辺の長さが$L \, \mathrm{cm}$の正六角形から図のように斜線部を取り除き,点線にそって${90}^\circ$折り曲げて,底面と側面だけからなる正六角柱の容器を作る.この容器の容積の最大値を求めよ.
(図は省略)
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第3問
$0 \leqq \theta<2\pi$のとき,関数$y=\cos^2 \theta+2 \sin \theta$の最大値,最小値を求めよ.また,そのときの$\theta$の値を求めよ.
立教大学 私立 立教大学 2016年 第3問
$a$を$\displaystyle 0 \leqq a \leqq \frac{1}{2}$を満たす実数とする.このとき,関数$f(x)=|x^2-2ax|$について,次の問いに答えよ.

(1)$\displaystyle a=\frac{1}{4}$のときの,$0 \leqq x \leqq 1$における$f(x)$の最大値を求めよ.
また,$\displaystyle a=\frac{4}{9}$のときの,$0 \leqq x \leqq 1$における$f(x)$の最大値を求めよ.
(2)$f(a)=f(1)$となる$a$の値を$A$とする.このとき,$A$を求めよ.
(3)$0 \leqq a \leqq A$とする.$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$を用いて表せ.
(4)$\displaystyle A \leqq a \leqq \frac{1}{2}$とする.$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$を用いて表せ.
(5)$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$の関数として,$M(a)$で表す.$\displaystyle 0 \leqq a \leqq \frac{1}{2}$における$M(a)$の最小値を求めよ.
名城大学 私立 名城大学 2016年 第2問
関数$\displaystyle f(x)=\frac{x^2}{2}-2 |x-1|+2$について,次の各問に答えよ.

(1)$y=f(x)$のグラフをかけ.
(2)$-4 \leqq x \leqq 2$のときの$f(x)$の最大値と最小値を求めよ.
(3)曲線$y=f(x)$と直線$y=x$で囲まれた$3$つの部分の面積の和を求めよ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。