タグ「曲線」の検索結果

6ページ目:全1320問中51問~60問を表示)
徳島大学 国立 徳島大学 2016年 第1問
曲線$y=x^3 (x>0)$を$C$とする.$C$上の点$\mathrm{P}(t,\ t^3)$における法線を$\ell$とし,$\ell$と$y$軸の交点を$\mathrm{Q}$とする.

(1)法線$\ell$の方程式を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$t$を用いて表せ.
(3)点$\mathrm{P}$が曲線$C$上を動くとき,$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の最小値を求めよ.
徳島大学 国立 徳島大学 2016年 第4問
媒介変数$\theta$を用いて$x=\sqrt{2} \cos \theta$,$y=\sqrt{3} \sin \theta (0 \leqq \theta \leqq 2\pi)$で表される曲線を$C$とする.

(1)$C$と$x$軸との交点の座標を求めよ.また,$C$と$y$軸との交点の座標を求めよ.
(2)$C$上の点$(x,\ y)$に対して,$x-y$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
(3)$C$上の点$(x,\ y)$に対して,$(x+y)(x-y)$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$a,\ b$を実数とし,曲線$C:y=x^3-3ax^2+bx$を考える.$C$の接線の傾きの最小値が$-3$であるとき,以下の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$C$が$x$軸の正の部分,負の部分とそれぞれ$1$点で交わるとする.このとき$a$の値の範囲を求めよ.
(3)$a$が$(2)$で求めた範囲にあるとき,$C$と$x$軸で囲まれた図形の面積の最小値を求め,そのときの$a$の値を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
和歌山大学 国立 和歌山大学 2016年 第4問
$t$を実数とし,$xy$平面上に直線$\ell:y=tx$と曲線$C:y=\log x$がある.次の問いに答えよ.

(1)$\ell$が$C$と共有点をもたないとき,$t$のとり得る値の範囲を求めよ.
(2)$\ell$が$C$と接するとき,$\ell$と$C$および$x$軸で囲まれた部分の面積$S$を求めよ.
(3)正の実数$a$に対して,$C$上の点$\mathrm{A}(a,\ \log a)$と$\ell$の距離を$f(a)$とおく.$f(a)$の最小値を$t$を用いて表せ.
宮崎大学 国立 宮崎大学 2016年 第3問
関数$\displaystyle f(x)=-\frac{1}{2}x^2+2 |x+1|+1$に対し,座標平面上の曲線$y=f(x)$を$C$とする.点$\mathrm{P}(t,\ f(t)) (t>-1)$における曲線$C$の接線に垂直で,点$\mathrm{P}$を通る直線を$\ell$とする.このとき,次の各問に答えよ.

(1)直線$\ell$の方程式を,$t$を用いて表せ.
(2)直線$\ell$が点$(-1,\ f(-1))$を通るとき,$t$の中で最も小さいものを求めよ.
(3)$(2)$で求めた$t$が定める直線$\ell$と曲線$C$によって囲まれる部分の面積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
香川大学 国立 香川大学 2016年 第5問
$a>0$とし,座標平面上の点$\mathrm{A}(a,\ 0)$から曲線$\displaystyle C:y=\frac{1}{x}$に引いた接線を$\ell$とする.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および直線$x=a$で囲まれた部分の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。