タグ「曲線」の検索結果

132ページ目:全1320問中1311問~1320問を表示)
名古屋市立大学 公立 名古屋市立大学 2010年 第1問
曲線$y=f(x)=x^3-x$上の点A$(a,\ f(a))$での接線を$\ell$とする.ただし$a>0$とする.次の問いに答えよ.

(1)接線$\ell$の方程式$y=g(x)$を求めよ.
(2)$y=f(x)$と$\ell$の接点以外の交点Bの座標$(b,\ f(b))$を求めよ.
(3)$x \leqq 2a$において,$f(x)-g(x)$の最大値とそのときの$x$の値を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第4問
$a$は定数で,$1<a<e$とする.曲線$C_1:y=x+\log x$上に点$\mathrm{P}(a,\ a+\log a)$,曲線$C_2:y=-\log x$上に点$\mathrm{Q}(a,\ -\log a)$がある.ただし,$e$は自然対数の底である.

(1)$\mathrm{P}$における$C_1$の接線を$\ell_1$,$\mathrm{Q}$における$C_2$の接線を$\ell_2$とする.このとき,$3$直線$x=0,\ \ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a$を用いて表せ.
(2)$C_1$と$3$直線$y=0,\ x=1,\ x=a$で囲まれた部分を$R_1$,$C_2$と2直線$y=0,\ x=a$で囲まれた部分を$R_2$とする.また,$R_1,\ R_2$を$x$軸の周りに$1$回転させてできる立体をそれぞれ$B_1,\ B_2$とする.このとき,$B_1$から$B_2$を除いた部分の体積$V$を求めよ.
京都府立大学 公立 京都府立大学 2010年 第3問
関数$\displaystyle f(x)=\int_0^\pi |t^2-x^2| \sin t \, dt$について,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)定数$a$を実数とする.$f(a)$を求めよ.
(3)$f(x)$は$x=\pi$で微分可能であることを示せ.
(4)点$(\pi,\ f(\pi))$における曲線$C:y=f(x)$の接線を$\ell$とする.$C$,$\ell$,および$y$軸で囲まれた部分の面積を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第5問
$k$を正の実数とし,$xy$平面上の$2$曲線
\[ C_1:y=-x^3+kx,\quad C_2:x^2+y^2=k \]
を考える.

(1)$C_1$と$C_2$の共有点の個数を求めよ.
(2)$C_1$と$C_2$が$4$つの共有点を持つとする.$x \geqq 0,\ y \geqq 0$の範囲において,$C_1$と$C_2$で囲まれた$2$つの部分の面積をそれぞれ求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第6問
$xy$平面上に$2$直線
\[ \ell:y=-x+5,\quad m:y=3x-3 \]
が与えられている.曲線$C$は,$y=x^2$を平行移動した放物線であり,$\ell$と点$\mathrm{P}$で接し,$m$と点$\mathrm{Q}$で接しているとする.

(1)$C$の方程式を求めよ.
(2)$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.
(3)$C$と$\ell,\ m$で囲まれた部分の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第6問
座標平面上の曲線$y=e^x-1$を$C$とする.曲線$C$と2直線$y=0,\ x=t$で囲まれる部分の面積を$S_1$とし,曲線$C$と2直線$y=2,\ x=t$で囲まれる部分の面積を$S_2$とする.ただし,$0<t<\log 3$とする.このとき,以下の問いに答えよ.

(1)$S_1=S_2$となるときの$t$の値を求めよ.
(2)$S_1+S_2$が最小となるときの$t$の値を求めよ.
高知工科大学 公立 高知工科大学 2010年 第2問
$a,\ m$を正の定数とする.座標平面において,曲線$C:y=x^3-2ax^2+a^2x$と直線$\ell:y=m^2x$は,異なる$3$点を共有し,その$x$座標はいずれも負ではないとする.次の各問に答えよ.

(1)$m$の取り得る値の範囲を$a$で表せ.また,$C$と$\ell$の共有点の$x$座標を求めよ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積が等しいとき,$m$を$a$で表せ.
(3)(2)のとき,$2$つの図形の面積の和が$\displaystyle \frac{1}{2}$になるように$a$の値を定めよ.
高知工科大学 公立 高知工科大学 2010年 第3問
座標平面において,曲線$y=e^x$を$C$とし,点$(1,\ 0)$を$\mathrm{P}_1$,点$\mathrm{P}_1$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_1$とする.

点$\mathrm{Q}_1$における$C$の接線と$x$軸との交点を$\mathrm{P}_2$,点$\mathrm{P}_2$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$における$C$の接線と$x$軸との交点を$\mathrm{P}_3$,点$\mathrm{P}_3$を通り$x$軸に垂直な直線と$C$との交点を$\mathrm{Q}_3$とする.
以下同様の操作を繰り返し,$x$軸上の点列$\mathrm{P}_1,\ \mathrm{P}_2,\ \mathrm{P}_3,\ \cdots$と曲線$C$上の点列$\mathrm{Q}_1,\ \mathrm{Q}_2,\ \mathrm{Q}_3,\ \cdots$を定める.
また,各自然数$n$について,曲線$C$と$2$つの線分$\mathrm{Q}_n \mathrm{P}_{n+1}$,$\mathrm{P}_{n+1} \mathrm{Q}_{n+1}$で囲まれた図形の面積を$S_n$として,数列
\[ S_1,\ S_2,\ \cdots,\ S_n,\ \cdots \]
を定める.次の各問に答えよ.


(1)$S_1$を求めよ.
(2)点$\mathrm{P}_n$の座標を求めよ.
(3)無限級数
\[ S_1+S_2+\cdots +S_n+\cdots \]
の和を求めよ.
富山県立大学 公立 富山県立大学 2010年 第1問
曲線$C:y=\sqrt{4x-x^2-3} (1 \leqq x \leqq 3)$について,次の問いに答えよ.

(1)曲線$C$のグラフをかけ.
(2)$k$は定数とする.直線$y=x+k$と曲線$C$が接する点$\mathrm{P}$の座標を求めよ.
(3)$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(3,\ 4)$がある.点$\mathrm{Q}$が曲線$C$上を動くとき,$\triangle \mathrm{ABQ}$の面積の最小値を求めよ.
横浜市立大学 公立 横浜市立大学 2010年 第2問
座標平面上の原点$\mathrm{O}$を中心とする半径$2$の円を$C$とする.$\mathrm{O}$を始点とする半直線上の二点$\mathrm{P}$,$\mathrm{Q}$について$\mathrm{OP} \cdot \mathrm{OQ}=4$が成立するとき,$\mathrm{P}$と$\mathrm{Q}$は$C$に関して対称であるという(下の図では,$\mathrm{P}$は$C$の内側に取ってある).以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}(x,\ y)$の$C$に関して対称な点$\mathrm{Q}$の座標を$x,\ y$を用いて表せ.
(2)点$\mathrm{P}(x,\ y)$が原点を除いた曲線
\[ (x-2)^2+(y-3)^2=13,\quad (x,\ y) \neq (0,\ 0) \]
上を動くとき,$\mathrm{Q}$の軌跡を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。