タグ「方程式」の検索結果

43ページ目:全1641問中421問~430問を表示)
西南学院大学 私立 西南学院大学 2015年 第3問
以下の問に答えよ.

(1)直線$\displaystyle y=\frac{1}{2}x$を原点のまわりに正の向きに$\displaystyle \frac{\pi}{4}$だけ回転した直線の方程式は$y=[チ]x$である.
(2)$2$点$\mathrm{A}(-1,\ 5)$,$\mathrm{B}(3,\ 2)$に対して,直線$y=mx-2m-1$が線分$\mathrm{AB}$(両端を含む)と共有点をもつような定数$m$の範囲は,$m \leqq [ツテ]$,$m \geqq [ト]$である.
(3)$2$点$\mathrm{C}(2,\ 1)$,$\mathrm{D}(5,\ 4)$に対して,$\mathrm{CP}:\mathrm{DP}=1:2$となるような点$\mathrm{P}(x,\ y)$の軌跡の方程式は,$\displaystyle \left( x-[ナ] \right)^2+\left( y-[ニ] \right)^2=[ヌ]$である.
西南学院大学 私立 西南学院大学 2015年 第3問
$k$は実数の定数とする.$0 \leqq x<2\pi$のとき,$x$の方程式
\[ \cos x-\sin^2 x+1-\frac{k}{4}=0 \]
について,以下の問に答えよ.

(1)方程式が解をもつのは,$k$が$[ソタ] \leqq k \leqq [チ]$のときである.

(2)$k=3$のとき,方程式の解は小さい順に,$\displaystyle x=\frac{[ツ]}{[テ]} \pi,\ \frac{[ト]}{[ナ]} \pi$である.

(3)$-1<k<0$のとき,方程式の解の個数は$[ニ]$個である.
広島文化学園大学 私立 広島文化学園大学 2015年 第3問
$2$次関数$y=2x^2-12x+13$のグラフを$G$とし,$G$の頂点を$\mathrm{P}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)グラフ$G$と$x$軸の共有点の座標を求めよ.
(3)$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{R}$とする.点$\mathrm{R}$と点$(1,\ 1)$を通り,$y$軸と点$(0,\ -4)$で交わる放物線の方程式を求めよ.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
西南学院大学 私立 西南学院大学 2015年 第3問
放物線$C:y=x^2-x$上の点$\mathrm{P}(2,\ 2)$における$C$の接線を$\ell_1$とし,$C$の接線のうち$\ell_1$と直交する直線を$\ell_2$とする.このとき,以下の問に答えよ.

(1)$\ell_1$の方程式は,$y=[ナ]x-[ニ]$である.

(2)$\ell_2$の方程式は,$\displaystyle y=-\frac{[ヌ]}{[ネ]}x-\frac{[ノ]}{[ハ]}$である.

(3)$\ell_1,\ \ell_2,\ C$で囲まれる部分の面積は,
\[ \int_a^2 \left\{ (x^2-x)-\left( \mkakko{ナ}x-\mkakko{ニ} \right) \right\} \, dx+\int_b^a \left\{ (x^2-x)-\left( -\frac{\mkakko{ヌ}}{\mkakko{ネ}}x-\frac{\mkakko{ノ}}{\mkakko{ハ}} \right) \right\} \, dx \]
によって求められる.ただし,$\displaystyle a=\frac{[ヒ]}{[フ]}$,$\displaystyle b=\frac{[ヘ]}{[ホ]}$である.
西南学院大学 私立 西南学院大学 2015年 第6問
原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$がある.$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$を通る直線を$\ell$とするとき,以下の問に答えよ.

(1)$\ell$上の任意の点を$\mathrm{P}(\overrightarrow{p})$とすると,直線$\ell$のベクトル方程式は実数$t$に対して,
\[ \overrightarrow{p}=(1-t) \overrightarrow{a}+t \overrightarrow{b} \cdots\cdots① \]
となることを証明せよ.
(2)$\overrightarrow{a},\ \overrightarrow{b}$のなす角を$2$等分する直線$m$上の任意の点を$\mathrm{Q}(\overrightarrow{q})$とすると,直線$m$のベクトル方程式は,実数$k$に対して,
\[ \overrightarrow{q}=k \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|} +\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となることを証明せよ.
また,$\mathrm{P}(\overrightarrow{p})$が直線$\ell$と直線$m$の交点であるとき,式$①$の$t$を$|\overrightarrow{a}|$と$|\overrightarrow{b}|$で表せ.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=-x^2+2ax-2a^2+a+2$について,次の問いに答えよ.ただし,$a$は実数とする.

(1)$2$次方程式$f(x)=0$が実数解をもつような$a$の値の範囲を求めよ.
(2)定積分$\displaystyle I=\int_0^a f(x) \, dx$を$a$の式で表せ.
(3)$a$の値が$(1)$で求めた範囲にあるとき,$(2)$で定めた$I$が最小となるような$a$の値を求めよ.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=2 \sqrt{1-x^2}$に対し,曲線$y=f(x)$上の点$\mathrm{P}(a,\ 2 \sqrt{1-a^2})$における接線を$\ell$とする.$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の長さを$d$とするとき,次の問いに答えよ.ただし,$0<a<1$とする.

(1)$f(x)$を微分せよ.
(2)直線$\ell$の方程式を求めよ.
(3)$d^2$を$a$を用いて表せ.
(4)$d$の値が最小となるような$a$の値と,そのときの$d$の値を求めよ.
中部大学 私立 中部大学 2015年 第3問
$a$を定数として,曲線$y=x^3+x^2+a$に関する次の問いに答えよ.

(1)$x=t$における曲線の接線の方程式を求めよ.
(2)$(1)$の接線が$(1,\ 0)$を通るとき,$a$を$t$の関数として求めよ.
(3)$(2)$の条件のもとで,接線が$3$本存在する$a$の範囲を求めよ.
東京経済大学 私立 東京経済大学 2015年 第1問
$x$についての$2$次方程式$x^2-2kx+k^2+k-6=0$が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,

(1)$\alpha,\ \beta$がともに正となるような定数$k$の値の範囲は,$[ア]<k<[イ]$である.
(2)$\alpha$が正,$\beta$が負となるような定数$k$の値の範囲は,$-[ウ]<k<[エ]$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。