タグ「方程式」の検索結果

12ページ目:全1641問中111問~120問を表示)
南山大学 私立 南山大学 2016年 第1問
次の$[ ]$の中に答を入れよ.

(1)放物線$C_1:y=x^2+ax+8$を$x$軸方向に$5$だけ平行移動した放物線$C_2$の方程式は$y=[ア]$である.$C_2$を$y$軸に関して対称移動した放物線が$C_1$に一致するとき,定数$a$の値を求めると$a=[イ]$である.
(2)$455$と$273$の最大公約数は$[ウ]$である.また,方程式$455x+273y=2821$を満たす自然数の組$(x,\ y)$をすべて求めると$(x,\ y)=[エ]$である.
(3)$0<\theta<\pi$とする.方程式$\cos 2\theta-\sin \theta=0$を解くと$\theta=[オ]$であり,方程式$\sin 2\theta-\cos 2\theta-\sqrt{6} \sin \theta+1=0$を解くと$\theta=[カ]$である.
(4)$3$つのさいころを同時に投げる.このとき,出る目の積が奇数になる確率は$[キ]$であり,出る目の積が$4$以上の偶数になる確率は$[ク]$である.
南山大学 私立 南山大学 2016年 第2問
関数$f(x)=xe^x$と曲線$C:y=f(x)$を考える.

(1)導関数$f^\prime(x)$を求めよ.
(2)$C$上の点$(t,\ te^t)$における$C$の接線の方程式を求めよ.

(3)$C$の接線で点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を通るものを求めよ.

(4)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(5)$(3)$で求めた接線のうち,接点の$x$座標が$\displaystyle \frac{1}{2}$より大きいものを$\ell$とするとき,$C$と$\ell$と直線$\displaystyle x=\frac{1}{2}$とで囲まれた部分の面積$S$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$2$つの関数$f(x)=x^3-x^2-x+c$,$g(x)=4x+1$がある.$x$は$0 \leqq x \leqq a$を満たす.ただし,$a$は整数,$c$は実数とする.

$xy$平面上の曲線$y=f(x)$上の異なる$2$点$(0,\ f(0))$,$(a,\ f(a))$を結ぶ直線は,$\displaystyle x=\frac{a}{3}$における$y=f(x)$の接線と直交する.このとき,


(1)$a=[$24$]$である.
(2)$c=0$のとき,関数$f(x)$の最大値は$[$25$]$である.
(3)方程式$f(x)=g(x)$が$2$つの異なる実数解を持つような$c$の値の範囲は
\[ [$26$] \leqq c<\frac{[$27$][$28$][$29$]}{[$30$][$31$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを記入しなさい.

(1)座標空間内の点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(2,\ -1,\ -1)$,$\mathrm{C}(-1,\ -2,\ -4)$,$\mathrm{D}(3,\ 2,\ 6)$に対して,三角形$\mathrm{ABC}$の重心を$\mathrm{M}$とし,三角形$\mathrm{ABD}$の重心を$\mathrm{N}$とする.このとき,点$\mathrm{M}$の座標は$[ア]$である.また,線分$\mathrm{MN}$を$4:3$に外分する点の座標は$[イ]$である.
(2)$\alpha=-1+2i$とする.$x=\alpha$が$2$次方程式$x^2+ax+b=0$の解であるような実数の組$(a,\ b)$は$(a,\ b)=[ウ]$である.また$\alpha^5+2 \alpha^4+3 \alpha^3+4 \alpha^2+5 \alpha$の値は$[エ]$である.
(3)関数$f(x)$が$\displaystyle f(x)=2x^2+3x+\int_0^{\frac{1}{2}} f(t) \, dt$を満たすとき,$f(x)=[オ]$である.
(4)$3$個のさいころを同時に投げるとき,以下の確率を求めなさい.

(i) 出る目の最大値が$4$以下である確率は$[カ]$である.
(ii) 出る目の最大値が$4$である確率は$[キ]$である.
(iii) 出る目の最大値が$4$であるとき,少なくとも$1$個のさいころの目が$1$である確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$f(x)=x^3-3 |x|$とする.以下の問いに答えなさい.

(1)関数$y=f(x)$のグラフをかきなさい.
(2)$f(x)+a=0$を満たす実数$x$が$1$つであるような定数$a$の値の範囲を求めなさい.
(3)曲線$y=f(x)+b$上の点$(-2,\ f(-2)+b)$における接線が原点を通るような定数$b$の値を求めなさい.また,その接線の方程式を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$t$を正の実数とし,$x$の$2$次方程式
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.

(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.

上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.

(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
早稲田大学 私立 早稲田大学 2016年 第2問
$2$つの複素数$w,\ z (z \neq 0)$の間に
\[ w=z-\frac{7}{4z} \]
という関係がある.ここで$w=x+yi$($x,\ y$は実数,$i$は虚数単位)と表すとき,以下の問に答えよ.

(1)複素数平面上で$z$が原点$\mathrm{O}$を中心として半径$\displaystyle \frac{7}{2}$の円周上を動くとする.このとき$w$が描く曲線$C$を座標平面上の$x$と$y$の方程式で表示せよ.
(2)$(1)$で得られた曲線$C$上の点$\mathrm{P}(s,\ t) (s>0,\ t>0)$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$,$y$軸と交わる点を$\mathrm{R}$とする.このとき原点$\mathrm{O}$と$\mathrm{Q}$と$\mathrm{R}$とを頂点とする直角三角形$\triangle \mathrm{OQR}$を$y$軸のまわりに$1$回転してできる円錐の体積の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)$2^{100}$を$2016$で割った余りは$[ア]$である.
(2)$a,\ b$を正の整数とする.方程式
\[ 2x^3-ax^2+bx+3=0 \]
が,$1$以上の有理数の解を持つような$a$の最小値は$[イ]$である.
(3)正$2016$角形$P$がある.頂点がすべて$P$の頂点であるような正多角形は全部で$[ウ]$個ある.ただし,頂点の異なる正多角形は異なるものとする.

(4)$\displaystyle \left( \sum_{k=1}^{2016} k \sin \frac{(2k-1) \pi}{2016} \right) \sin \frac{\pi}{2016}=[エ]$
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。