タグ「方法」の検索結果

1ページ目:全49問中1問~10問を表示)
鳴門教育大学 国立 鳴門教育大学 2016年 第5問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がサイコロを振って一番大きな目が出た人を勝者とします.ただし,一番大きな目が出た人が$2$人以上いる場合は,その人たち全員を勝者とします.$1$回目で勝者が一人に決まらなかった場合には,勝者の間で再びサイコロを振って,同様の方法で勝者を決めるものとします.このとき次の問いに答えなさい.

(1)$1$回目で勝者が$1$人に決まる確率を求めなさい.
(2)$1$回目で勝者が$2$人だけ残る確率を求めなさい.
(3)$2$回目で勝者が$1$人に決まる確率を求めなさい.
広島経済大学 私立 広島経済大学 2016年 第2問
次の空欄に当てはまる最も適切な数値を記入せよ.

(1)$6$人を$2$つの部屋$\mathrm{A}$,$\mathrm{B}$に入れる方法は$[$10$]$通りある.ただし,$1$人も入らない部屋があってもよいものとする.
(2)$6$人を$3$つの部屋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に$2$人ずつ入れる方法は$[$11$]$通りある.
(3)$6$人を$2$人ずつの$3$組に分ける方法は$[$12$]$通りある.
(4)$6$人が男子$4$人,女子$2$人から成るとする.このとき,$3$つの部屋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に$2$人ずつ入れる場合,女子$2$人が同じ部屋に入る方法は$[$13$]$通りある.
西南学院大学 私立 西南学院大学 2016年 第5問
次の問いに答えよ.

\mon[$\tocichi$] $X_i,\ Y_i (i=1,\ 2,\ 3)$は実数とする.${X_1}^2+{X_2}^2+{X_3}^2 \neq 0$,${Y_1}^2+{Y_2}^2+{Y_3}^2 \neq 0$のとき,
\[ (X_1Y_1+X_2Y_2+X_3Y_3)^2 \leqq ({X_1}^2+{X_2}^2+{X_3}^2)({Y_1}^2+{Y_2}^2+{Y_3}^2) \quad \cdots\cdots ① \]
を以下の指示に従って,$2$通りの方法で証明せよ.

\mon[$(1)$] すべての実数$t$に対して,
\[ (tX_1-Y_1)^2+(tX_2-Y_2)^2+(tX_3-Y_3)^2 \geqq 0 \]
が成り立つことを利用して$①$を証明せよ.また等号が成り立つときの条件を示せ.
\mon[$(2)$] 原点を$\mathrm{O}$とする$2$つのベクトル,
\[ \overrightarrow{\mathrm{OA}}=(X_1,\ X_2,\ X_3),\quad \overrightarrow{\mathrm{OB}}=(Y_1,\ Y_2,\ Y_3) \]
を考える.$①$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$によって表せ.その上で,$①$を証明せよ.また等号が成り立つときの$2$つのベクトルの位置関係を示せ.

\mon[$\tocni$] 対応する$2$つの変量$x,\ y$の値の組$(x_i,\ y_i) (i=1,\ 2,\ 3)$を考える.変量$x$の平均を$\overline{x}$とし,$x$の偏差を$X$とする.すなわち,$X_i=x_i-\overline{x} (i=1,\ 2,\ 3)$であり,変量$y$についても同様とする.また$x,\ y$の相関係数が定義できる場合を考え,これを$r$とする.このとき,上記$①$を用いて,
\[ -1 \leqq r \leqq 1 \]
となることを示せ.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
広島大学 国立 広島大学 2015年 第5問
$m,\ n$を自然数とする.次の問いに答えよ.

(1)$m \geqq 2$,$n \geqq 2$とする.異なる$m$種類の文字から重複を許して$n$個を選び,$1$列に並べる.このとき,ちょうど$2$種類の文字を含む文字列は何通りあるか求めよ.
(2)$n \geqq 3$とする.$3$種類の文字$a,\ b,\ c$から重複を許して$n$個を選び,$1$列に並べる.このとき$a,\ b,\ c$すべての文字を含む文字列は何通りあるか求めよ.
(3)$n \geqq 3$とする.$n$人を最大$3$組までグループ分けする.このときできたグループ数が$2$である確率$p_n$を求めよ.ただし,どのグループ分けも同様に確からしいとする.
たとえば,$n=3$のとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人をグループ分けする方法は
$\{(\mathrm{A},\ \mathrm{B},\ \mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{B}),\ (\mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{C}),\ (\mathrm{B})\}$
$\{(\mathrm{B},\ \mathrm{C}),\ (\mathrm{A})\},\quad \{(\mathrm{A}),\ (\mathrm{B}),\ (\mathrm{C})\}$
の$5$通りであるので,$\displaystyle p_3=\frac{3}{5}$である.
(4)$(3)$の確率$p_n$が$\displaystyle \frac{1}{3}$以下となるような$n$の範囲を求めよ.
金沢大学 国立 金沢大学 2015年 第3問
座標平面上で,$x$座標と$y$座標がともに$0$以上の整数である点を,ここでは格子点とよぶ.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へ,両端点がともに格子点であり長さが$1$の線分を用いて,格子点$(0,\ 0)$から順に最も少ない本数でつなぐ方法を数える.例えば,格子点$(0,\ 0)$から格子点$(3,\ 1)$へつなぐ方法の数は$4$である.次の問いに答えよ.

(1)格子点$(0,\ 0)$から格子点$(4,\ 0)$へつなぐ方法の数と,格子点$(0,\ 0)$から格子点$(2,\ 2)$へつなぐ方法の数を,それぞれ求めよ.
(2)条件$k+\ell=5$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を求めよ.
(3)条件$k+\ell=n (n \geqq 1)$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
(4)条件$k+\ell=n$($k$と$\ell$はともに偶数で,$n \geqq 2$)を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第4問
$0,\ 1,\ 2,\ 3,\ 4,\ 5$の数字が書かれた$6$枚のカードがある.以下の問いに答えよ.ただし,答えは既約分数で示せ.

(1)これら$6$枚のカードの中から$4$枚を取って並べるとき,$4$桁の整数は全部で何通りできるか求めよ.
(2)これら$6$枚のカードを$\mathrm{A}$,$\mathrm{B}$の$2$組に分ける方法は全部で何通りあるか求めよ.ただし,$\mathrm{A}$,$\mathrm{B}$いずれの組も少なくとも$1$枚のカードを含む.
(3)これら$6$枚のカードを$2$組に分ける方法は全部で何通りあるか求めよ.ただし,いずれの組も少なくとも$1$枚のカードを含む.
(4)これら$6$枚のカードが箱に入っている.この箱の中から$2$枚のカードを一度に無作為に取り出す.大きい方の数字が$4$以下で,小さい方の数字が$2$以上である確率を求めよ.
(5)これら$6$枚のカードを無作為に横一列に並べるとき,$1$が$0$の隣にならない確率を求めよ.
昭和大学 私立 昭和大学 2015年 第2問
以下の各問いに答えよ.

(1)$108$の正の約数について,その個数と全ての約数の総和を求めよ.
(2)ある試行における事象$A,\ B$に対して,$\displaystyle P_A(B)=\frac{1}{2}$,$\displaystyle P_B(A)=\frac{3}{5}$,$\displaystyle P(A \cap B)=\frac{1}{5}$であるとき,$P(A)$,$P(B)$をそれぞれ求めよ.
(3)$12$名の高校生を$6$名,$3$名,$3$名の$3$つのグループに分ける方法は何通りあるか答えよ.
(4)$5$で割ると$3$余り,$7$で割ると$6$余るような自然数のうち,$4$桁で最小のものを求めよ.
昭和大学 私立 昭和大学 2015年 第2問
以下の各問いに答えよ.

(1)$108$の正の約数について,その個数と全ての約数の総和を求めよ.
(2)ある試行における事象$A,\ B$に対して,$\displaystyle P_A(B)=\frac{1}{2}$,$\displaystyle P_B(A)=\frac{3}{5}$,$\displaystyle P(A \cap B)=\frac{1}{5}$であるとき,$P(A)$,$P(B)$をそれぞれ求めよ.
(3)$12$名の高校生を$6$名,$3$名,$3$名の$3$つのグループに分ける方法は何通りあるか答えよ.
(4)$5$で割ると$3$余り,$7$で割ると$6$余るような自然数のうち,$4$桁で最小のものを求めよ.
早稲田大学 私立 早稲田大学 2015年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$人の紳士から,それぞれの帽子を$1$つずつ受けとり,それらを再び$1$人に$1$つずつ配る.帽子は必ずしも元の持ち主に戻されるわけではない.このとき,以下の問に答えよ.

(1)次の空欄にあてはまる数を解答欄に記入せよ.

帽子を配る方法は全部で$[ア]$通りある.そのうち,$\mathrm{A}$が自分の帽子を受けとるのは$[イ]$通り,$\mathrm{B}$が自分の帽子を受けとるのは同じく$[イ]$通り,$\mathrm{A}$と$\mathrm{B}$がともに自分の帽子を受けとるのは$[ウ]$通りである.したがって,$\mathrm{A}$が自分の帽子を受けとらず,かつ$\mathrm{B}$も自分の帽子を受けとらない場合は$[エ]$通りである.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が誰も自分の帽子を受けとらない場合は何通りか.
スポンサーリンク

「方法」とは・・・

 まだこのタグの説明は執筆されていません。