タグ「整数」の検索結果

24ページ目:全1020問中231問~240問を表示)
富山大学 国立 富山大学 2015年 第3問
数列$\{a_n\}$を
\[ \left\{ \begin{array}{l}
a_1=2 \sqrt{2}, \\
a_n>0,\quad {a_1}^{\frac{1}{n}} {a_2}^{\frac{1}{n}} \ \cdots \ {a_{n-1}}^{\frac{1}{n}} {a_n}^{\frac{2}{n}}=8 \quad (n \geqq 2)
\end{array} \right. \]
で定めるとき,次の問いに答えよ.

(1)$b_n=\log_2 a_n$とおくとき,数列$\{b_n\}$の一般項を求めよ.
(2)$c_n=a_1 a_2 \cdots a_n$とおくとき,数列$\{c_n\}$の一般項を求めよ.
(3)${10}^{k} \leqq c_{11}<{10}^{k+1}$となる整数$k$を求めよ.ただし,$\log_{10}2=0.3010$とする.
高知大学 国立 高知大学 2015年 第2問
関数$f(x)=nx^2-2(a_1+a_2+\cdots +a_n)x+({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$を考える.ただし,$n$は正の整数で,$a_1,\ a_2,\ \cdots ,\ a_n$は実数である.次の問いに答えよ.

(1)$n=1$および$n=2$のとき,常に$f(x) \geqq 0$であることを示せ.
(2)すべての$n$に対し,常に$f(x) \geqq 0$であることを示せ.
(3)${(a_1+a_2+\cdots +a_n)}^2 \leqq n({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$であることを示せ.
(4)${(a_1+a_2+\cdots +a_n)}^2=n({a_1}^2+{a_2}^2+\cdots +{a_n}^2)$であれば,$a_1,\ a_2,\ \cdots,\ a_n$はすべて等しいことを示せ.
群馬大学 国立 群馬大学 2015年 第5問
$p$は素数とし,$m,\ n$は整数で$m \neq 0$とする.$n,\ p-m,\ m+n$がこの順で等差数列になり,$p-m,\ n,\ p+m$がこの順で等比数列になるとき,$p,\ m,\ n$を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
次の問いに答えよ.

(1)数列$\{a_n\}$の一般項が$\displaystyle a_n=\frac{3}{2} \cdot {(-1)}^n+\frac{5}{2}$で与えられるとき,無限級数$\displaystyle \sum_{n=1}^\infty \frac{a_n}{7^n}$の和を求めよ.
(2)すべての自然数$n$に対して$b_n$は$0 \leqq b_n \leqq 6$を満たす整数で,$\displaystyle \sum_{n=1}^\infty \frac{b_n}{7^n}=\frac{3}{8}$が成り立つ.このとき$b_1,\ b_2,\ b_3$を求め,さらに数列$\{b_n\}$の一般項を求めよ.
高知大学 国立 高知大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle |x+1|<\frac{1}{2},\ |y-2|<\frac{1}{3}$のとき
\[ |-8x^3+12xy+3y^2+4|<10 \]
を示せ.
次の$3$題$(2)$~$(4)$から$1$題選択して解答せよ.
(2)$12$個のサイコロを同時に投げたとき,$1$の目がちょうど$n$個出る確率を$P_n$とする.$P_n$は$n=2$のとき最大になることを示せ.
(3)$a$を正の整数とし,$p,\ q$を素数とする.このとき,$2$次方程式
\[ ax^2-px+q=0 \]
の$2$解が整数となるような組$(a,\ p,\ q)$をすべて求めよ.
(4)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に,異なる$2$点$\mathrm{X}$,$\mathrm{Y}$を,$\mathrm{BXYC}$の順に並ぶように選ぶ.$\mathrm{X}$を通り$\mathrm{AB}$に平行な直線と,$\mathrm{Y}$を通り$\mathrm{AC}$に平行な直線との交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点を$\mathrm{Z}$とする.このとき
\[ \frac{\mathrm{CY}}{\mathrm{BX}}=\frac{\mathrm{YZ}}{\mathrm{XZ}} \]
となることを示せ.
福井大学 国立 福井大学 2015年 第4問
正の整数$n$について,$\sqrt{2n-1}$以下の最大の整数を$a_n$と定める.このとき,以下の問いに答えよ.

(1)$a_{100}$の値を求めよ.
(2)$a_n=6$となる$n$はいくつあるか求めよ.
(3)正の整数$k$に対して,$a_n=2k$となる$n$はいくつあるか求めよ.
(4)数列$\{a_n\}$の初項から第$100$項までの和を求めよ.
福井大学 国立 福井大学 2015年 第3問
正の整数$n$について,$\sqrt{2n-1}$以下の最大の整数を$a_n$と定める.このとき,以下の問いに答えよ.

(1)$a_{100}$の値を求めよ.また,$a_n=a_{100}$となる$n$はいくつあるか求めよ.
(2)正の整数$m$に対して,$a_n=m$となる$n$はいくつあるか求めよ.
(3)数列$\{a_n\}$の初項から第$100$項までの和を求めよ.
(4)$\displaystyle T_n=\sum_{k=1}^n \frac{1}{a_k}$とする.$T_{12}$の値を求めよ.また,$T_n>10$をみたす最小の$n$を求めよ.
福井大学 国立 福井大学 2015年 第3問
正の整数$n$について,$\sqrt{2n-1}$以下の最大の整数を$a_n$と定める.このとき,以下の問いに答えよ.

(1)正の整数$m$に対して,$a_n=m$となる$n$はいくつあるか求めよ.
(2)数列$\{a_n\}$の初項から第$100$項までの和を求めよ.
(3)$\displaystyle T_n=\sum_{k=1}^n \frac{1}{a_k}$とする.$T_{12}$の値を求めよ.また,$T_n>10$をみたす最小の$n$を求めよ.
東京学芸大学 国立 東京学芸大学 2015年 第2問
$n$を$2$以上の整数とする.曲線$\displaystyle y=\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$,直線$\displaystyle x=\frac{\pi}{2}$および$x$軸で囲まれる部分の面積を$n-1$本の曲線$y=a_k \cos x (k=1,\ 2,\ \cdots,\ n-1)$によって$n$等分するとき,下の問いに答えよ.ただし,$0<a_1<a_2<\cdots<a_{n-1}$とする.

(1)$n=2$のとき,$a_1$の値を求めよ.
(2)$a_k$を$n$と$k$で表せ.
鳴門教育大学 国立 鳴門教育大学 2015年 第4問
方程式$29x+33y=1$について,次の問いに答えなさい.

(1)整数解をすべて求めなさい.
(2)整数解$x,\ y$のうち,$|\displaystyle\frac{x|{y}}$が最大となる$x,\ y$を求めなさい.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。