タグ「数字」の検索結果

7ページ目:全290問中61問~70問を表示)
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ボタンを$1$回押すたびに$1,\ 2,\ 3,\ 4,\ 5,\ 6$のいずれかの数字が$1$つ画面に表示される機械がある.このうちの$1$つの数字$Q$が表示される確率は$\displaystyle \frac{1}{k}$であり,$Q$以外の数字が表示される確率はいずれも等しいとする.ただし,$k$は$k>6$を満たす自然数とする.

ボタンを$1$回押して表示された数字を確認する試行を繰り返すとき,$1$回目に$4$の数字,$2$回目に$5$の数字が表示される確率は,$1$回目に$5$の数字,$2$回目に$6$の数字が表示される確率の$\displaystyle \frac{8}{5}$倍である.このとき,

(1)$Q$は$[$59$]$であり,$k$は$[$60$]$である.
(2)この試行を$3$回繰り返すとき,表示された$3$つの数字の和が$16$となる確率は
\[ \frac{[$61$][$62$][$63$]}{\kakkofour{$64$}{$65$}{$66$}{$67$}} \]
である.
(3)この試行を$500$回繰り返すとき,そのうち$Q$の数字が$n$回表示される確率を$P_n$とおくと,$P_n$の値が最も大きくなる$n$の値は$[$68$][$69$]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
硬貨を$1$枚投げて表が出れば$\mathrm{A}$に$1$点,裏が出れば$\mathrm{B}$に$1$点を与えることを繰り返す.硬貨を$5$回投げ終わった時点で$\mathrm{A}$の得点は$3$点,$\mathrm{B}$の得点は$2$点であった.なお,硬貨は表裏が等しい確率で出るものとする.

(1)$6$回目以降,$\mathrm{A}$,$\mathrm{B}$のどちらかが$5$点を取るまでの各回の得点の与え方を樹形図で表すと,その場合の数は$[$11$][$12$]$通りであることがわかる.そして,$\mathrm{A}$が$\mathrm{B}$より先に$5$点を取る確率は$\displaystyle \frac{[$13$][$14$]}{[$15$][$16$]}$である.
(2)$6$回目以降の各回の得点の与え方を次のように変更する.$\mathrm{A}$は$1,\ 3,\ 5$と書かれたカードがそれぞれ$1$枚ずつ入った袋から,$\mathrm{B}$は$2,\ 4$と書かれたカードが$1$枚ずつ入った袋から,中を見ずに$1$枚取り出し,大きい数字の書かれたカードを取り出した方に$1$点を与える.このとき,各回ごとに$\mathrm{A}$が得点する確率は$\displaystyle \frac{[$17$]}{[$18$]}$であり,$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$19$][$20$]}{[$21$][$22$]}$である.
(3)$6$回目以降について,$\mathrm{A}$の袋は$(2)$と同じとし,$\mathrm{B}$の袋には$6$と書かれたカードを$1$枚追加して,$(2)$と同様に各回の得点の与え方を定める.このとき$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$23$][$24$]}{[$25$][$26$]}$である.
上智大学 私立 上智大学 2015年 第2問
赤いカードと青いカードが$10$枚ずつあり,それぞれ$0$から$9$までの数字が$1$つずつ書かれている.これら$20$枚から数枚を選ぶときの選び方に関する次の条件$P$を考える.

$P$:選んだカードのうち,赤いカードに書かれた数字はすべて偶数である.

(1)$P$であるための必要十分条件を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
(2)$P$の否定を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
選択肢:
\mon[$\mathrm{A}$] 選んだカードのうち,青いカードに書かれた数字はすべて奇数である.
\mon[$\mathrm{B}$] 選んだカードのうち,奇数が書かれたカードはすべて青い.
\mon[$\mathrm{C}$] 選んだカードのうち,偶数が書かれたカードはすべて赤い.
\mon[$\mathrm{D}$] 選んだカードのうちに,偶数が書かれた青いカードが存在する.
\mon[$\mathrm{E}$] 選んだカードのうちに,奇数が書かれた赤いカードが存在する.
\mon[$\mathrm{F}$] 選んだカードのうちに,偶数が書かれた青いカードは存在しない.
\mon[$\mathrm{G}$] 選んだカードのうちに,奇数が書かれた赤いカードは存在しない.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上に$\mathrm{A}(3,\ 2)$,$\mathrm{B}(8,\ 2)$,$\mathrm{C}(6,\ 6)$,$\mathrm{D}(3,\ 6)$を頂点とする四角形$\mathrm{ABCD}$と点$\mathrm{P}$がある.$\mathrm{P}$と四角形$\mathrm{ABCD}$の周上の点(頂点を含む)との距離の最小値を$d$とする.

(1)$\mathrm{P}$の座標が$(2,\ 1)$,$\mathrm{P}$の座標が$(2,\ 8)$,$\mathrm{P}$の座標が$(6,\ 4)$のとき,$d$はそれぞれ
\[ \sqrt{[ア]},\quad \sqrt{[イ]},\quad \frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.
(2)$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8$のそれぞれの数字が書かれたカードが$1$枚ずつ,合計$8$枚ある.これらの$8$枚のカードをよく混ぜてから,カードを$1$枚取り出す.このカードを元に戻さないで,もう$1$枚カードを取り出す.$1$回目に取り出したカードの数字を$x$,$2$回目に取り出したカードの数字を$y$として,座標が$(x,\ y)$である点を$\mathrm{P}$とする.

(i) $d=0$,$d=1$,$d=2$となる確率は,それぞれ
\[ \frac{[カ]}{[キ][ク]},\quad \frac{[ケ]}{[コ][サ]},\quad \frac{[シ]}{[ス][セ]} \]
である.
また,$d$が無理数となる確率は,$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}$である.
(ii) $d$の期待値は,
\[ \frac{[テ]}{[ト][ナ]}+\frac{[ニ]}{[ヌ][ネ]} \sqrt{[ノ]}+\frac{[ハ][ヒ]}{[フ][ヘ][ホ]} \sqrt{[マ]} \]
である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章の$[ア]$から$[ム]$までに当てはまる数字$0$~$9$を求めなさい.

(1)$c$を定数として,$3$次関数$f(x)$を
\[ f(x)=\frac{1}{3}x(x-1)(x-c) \]
と定める.$f(x)$の導関数$f^\prime(x)$は$\alpha,\ \beta (\alpha<\beta)$において
\[ f^\prime(\alpha)=0,\quad f^\prime(\beta)=0 \]
を満たすものとする.
解と係数の関係により,
\[ \alpha+\beta=\frac{[ア]}{[イ]}(c+1),\quad \alpha\beta=\frac{1}{[ウ]}c \]
である.したがって


$\displaystyle\frac{f(\alpha)-f(\beta)}{\alpha-\beta}=-\frac{[エ]}{[オ][カ]}(c^2-c+[キ])$

$\displaystyle (\alpha-\beta)^2=\frac{[ク]}{[ケ]}(c^2-c+1)$


となるので,$\displaystyle c=\frac{1}{2}$のとき
\[ f(\alpha)-f(\beta)=\frac{\sqrt{[コ]}}{[サ][シ]} \]
である.
(2)定数$\theta$に対して,数列$\{a_n\}$を
\[ a_n=\cos (2^{n-1}\theta) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(i) 余弦の$2$倍角の公式により,数列$\{a_n\}$は漸化式
\[ a_{n+1}=[ス] {a_n^2}-1 \]
を満たす.
(ii) $\theta$が$\displaystyle \cos \theta=\frac{1}{3}$を満たすとき
\[ a_3=\frac{[セ][ソ]}{[タ][チ]} \]
である.
(iii) $\displaystyle \theta=\frac{5}{96}\pi$とするとき
\[ a_{n+1}=a_n \]
を満たす最小の正の整数$n$は$[ツ]$である.

(3)大,中,小の$3$個のさいころを同時に投げるものとする.

(i) $1$の目が少なくとも$1$つ出る確率は$\displaystyle \frac{[テ][ト]}{[ナ][ニ][ヌ]}$である.
(ii) 出る目の最大値が$5$である確率は$\displaystyle \frac{[ネ][ノ]}{[ハ][ヒ][フ]}$である.
(iii) 大のさいころの目は中のさいころの目以上であり,かつ,小のさいころの目は中のさいころの目以下である確率は$\displaystyle \frac{[ヘ]}{[ホ][マ]}$である.
\mon[$\tokeishi$] 大と小のさいころの目の平均が中のさいころの目と等しい確率は$\displaystyle \frac{1}{[ミ][ム]}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.

(1)実数$a$に対し,$2$つの$2$次関数

$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$

を考える.

(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.

$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」

このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.

(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,

$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$

となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
スポンサーリンク

「数字」とは・・・

 まだこのタグの説明は執筆されていません。