タグ「数列の和」の検索結果

12ページ目:全498問中111問~120問を表示)
宮城教育大学 国立 宮城教育大学 2015年 第1問
$p,\ q$を自然数として,$p>q$とする.等差数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\displaystyle S_p=\frac{p}{q}$,$\displaystyle S_q=\frac{q}{p}$が成り立つとする.次の問に答えよ.

(1)数列$\{a_n\}$の初項と公差を$p,\ q$を用いて表せ.
(2)自然数$m$に対して,数列$\{a_n\}$の初項から第$2^m$項までの和の逆数を$b_m$とする.このとき,数列$\{b_n\}$の初項から第$n$項までの和を求めよ.
(3)$(2)$の数列$\{b_n\}$について無限級数$\displaystyle \sum_{n=1}^\infty b_n$の和が$48$であり,数列$\{a_n\}$の第$p+q$項が$\displaystyle \frac{17}{48}$であるとき,$p$と$q$を求めよ.
福井大学 国立 福井大学 2015年 第3問
正の整数$n$について,$\sqrt{2n-1}$以下の最大の整数を$a_n$と定める.このとき,以下の問いに答えよ.

(1)正の整数$m$に対して,$a_n=m$となる$n$はいくつあるか求めよ.
(2)数列$\{a_n\}$の初項から第$100$項までの和を求めよ.
(3)$\displaystyle T_n=\sum_{k=1}^n \frac{1}{a_k}$とする.$T_{12}$の値を求めよ.また,$T_n>10$をみたす最小の$n$を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
三重大学 国立 三重大学 2015年 第4問
数列$\{a_n\}$と$\{b_n\}$を

$a_1=119,\quad a_{n+1}-a_n=12n-61 \quad (n=1,\ 2,\ 3,\ \cdots)$,

$\displaystyle \sum_{k=1}^n \frac{1}{b_k}=-\frac{1}{2}n(n-2c+1) \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定める.ここで$c$は$5<c<6$を満たす定数とする.以下の問いに答えよ.

(1)一般項$a_n,\ b_n$を求めよ.
(2)$a_nb_n>0$となる$n$をすべて求めよ.
(3)$\displaystyle \sum_{k=1}^n a_kb_k$が最大になる$n$を求めよ.
三重大学 国立 三重大学 2015年 第4問
数列$\{a_n\}$と$\{b_n\}$を

$a_1=119,\quad a_{n+1}-a_n=12n-61 \quad (n=1,\ 2,\ 3,\ \cdots)$,

$\displaystyle \sum_{k=1}^n b_k=-\frac{1}{2}n(n-2c+1) \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定める.ここで$c$は$5<c<6$を満たす定数とする.以下の問いに答えよ.

(1)一般項$a_n$を求めよ.
(2)一般項$b_n$を求めよ.
(3)$\displaystyle \frac{a_n}{b_n}>0$となる$n$をすべて求めよ.
三重大学 国立 三重大学 2015年 第5問
数列$\{a_n\}$と$\{b_n\}$を

$a_1=119,\quad a_{n+1}-a_n=12n-61 \quad (n=1,\ 2,\ 3,\ \cdots)$,

$\displaystyle \sum_{k=1}^n b_k=-\frac{1}{2}n(n-2c+1) \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定める.ここで$c$は$5<c<6$を満たす定数とする.以下の問いに答えよ.

(1)一般項$a_n,\ b_n$を求めよ.
(2)$\displaystyle \frac{a_n}{b_n}>0$となる$n$をすべて求めよ.
(3)$\displaystyle \sum_{k=1}^n \frac{a_k}{b_k}$が最大になる$n$を求めよ.
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第3問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第4問
$n$を自然数とする.

(1)$n$以下の非負の整数$k$について,関数$x(1+x)^n$の導関数の$x^k$の係数を求めよ.
(2)$\displaystyle \sum_{k=0}^n (k+1)^2 \comb{n}{k}=(n+1)(n+4)2^{n-2}$を示せ.
信州大学 国立 信州大学 2015年 第2問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。