タグ「接線」の検索結果

1ページ目:全994問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
北海道大学 国立 北海道大学 2016年 第1問
$a,\ b,\ c$を実数とし,
\[ f(x)=x^3+ax^2+bx+c \]
とおく.曲線$C:y=f(x)$上に異なる$2$点$\mathrm{P}(s,\ f(s))$,$\mathrm{Q}(t,\ f(t))$がある.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線が平行になるための条件を$s,\ t,\ a$の関係式として求めよ.
(3)$(2)$の条件のもとで,線分$\mathrm{PQ}$の中点が$C$上にあることを示せ.
広島大学 国立 広島大学 2016年 第1問
$a$を正の定数とし,座標平面上において,
\[ \text{円}C_1:x^2+y^2=1,\quad \text{放物線}C_2:y=ax^2+1 \]
を考える.$C_1$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$における$C_1$の接線$\ell$は点$\mathrm{Q}(s,\ t)$で$C_2$に接している.次の問いに答えよ.

(1)$s,\ t$および$a$を求めよ.
(2)$C_2,\ \ell$および$y$軸で囲まれた部分の面積を求めよ.
(3)円$C_1$上の点が点$\mathrm{P}$から点$\mathrm{R}(0,\ 1)$まで反時計回りに動いてできる円弧を$C_3$とする.$C_2$,$\ell$および$C_3$で囲まれた部分の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第1問
関数$\displaystyle f(x)=\frac{x-1}{x^2+1}$のグラフを曲線$C$とする.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$の変曲点を求めよ.
(3)曲線$C$上の点$(0,\ f(0))$における接線を$\ell$とする.曲線$C$と接線$\ell$とで囲まれた図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
山形大学 国立 山形大学 2016年 第2問
$n$を自然数とし,放物線$y=-x^2+nx$を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$上の点$(1,\ n-1)$における接線の傾きを$a$とする.$0 \leqq a \leqq 3$を満たす$n$をすべて求めよ.
(2)関数$y=-x^2+nx$の最大値を$M$とする.$1 \leqq M \leqq 5$を満たす$n$をすべて求めよ.
(3)放物線$C$と直線$y=-x$で囲まれた図形の面積を$S$とする.$S \leqq 36$を満たす$n$をすべて求めよ.
(4)$n \geqq 7$とする.放物線$C$の$x \geqq 6$の部分と$x$軸および直線$x=6$で囲まれた図形の面積を$T$とする.$T \leqq 72$を満たす$n$をすべて求めよ.
山形大学 国立 山形大学 2016年 第2問
$n$を自然数とし,放物線$y=-x^2+nx$を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$上の点$(1,\ n-1)$における接線の傾きを$a$とする.$0 \leqq a \leqq 3$を満たす$n$をすべて求めよ.
(2)関数$y=-x^2+nx$の最大値を$M$とする.$1 \leqq M \leqq 5$を満たす$n$をすべて求めよ.
(3)放物線$C$と直線$y=-x$で囲まれた図形の面積を$S$とする.$S \leqq 36$を満たす$n$をすべて求めよ.
(4)$n \geqq 7$とする.放物線$C$の$x \geqq 6$の部分と$x$軸および直線$x=6$で囲まれた図形の面積を$T$とする.$T \leqq 72$を満たす$n$をすべて求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第5問
$xy$平面上に楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$がある.次の問いに答えよ.

(1)点$\mathrm{P}(a,\ b)$を通る$C$の接線が$2$本あり,それらが直交するとき,$a,\ b$がみたす条件を求めよ.
(2)$C$に外接する長方形のうち,$x$座標が$1$で$y$座標が正である頂点をもつものの面積を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。