タグ「座標」の検索結果

4ページ目:全2097問中31問~40問を表示)
静岡大学 国立 静岡大学 2016年 第2問
$a,\ b$を実数とする.$3$次関数$f(x)=2x^3-3(a+1)x^2+6ax+b$について次の各問に答えよ.

(1)関数$f(x)$が極値をもつための$a$の条件を求めよ.
(2)方程式$f(x)=0$が相異なる$3$つの正の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
(3)方程式$f(x)=0$が$2$つの相異なる正の実数解と$1$つの負の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
東北大学 国立 東北大学 2016年 第1問
平面上で原点$\mathrm{O}$と$3$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ 2)$,$\mathrm{C}(-1,\ 1)$を考える.実数$s,\ t$に対し,点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}} \]
により定める.以下の問いに答えよ.

(1)$s,\ t$が条件
\[ -1 \leqq s \leqq 1,\quad -1 \leqq t \leqq 1,\quad -1 \leqq s+t \leqq 1 \]
を満たすとき,点$\mathrm{P}(x,\ y)$の存在する範囲$D$を図示せよ.
(2)点$\mathrm{P}$が$(1)$で求めた範囲$D$を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値を求め,そのときの$\mathrm{P}$の座標を求めよ.
岐阜大学 国立 岐阜大学 2016年 第4問
数列$\{r_n\}$を初項$r_1=1$,公差$1$の等差数列とする.また,数列$\{a_n\}$を次の式で定める.
\[ a_n={r_n}^2+\frac{1}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
以下の問に答えよ.

(1)一般項$a_n$を求めよ.
(2)円$C_n:x^2+(y-a_n)^2={r_n}^2$と放物線$P:y=x^2$の共有点の座標を求めよ.
(3)円$C_n$と円$C_{n+1}$の共有点$(x_n,\ y_n)$の座標を求めよ.
(4)円$C_1,\ C_2,\ C_3$と放物線$P$の概形を描け.
岐阜大学 国立 岐阜大学 2016年 第5問
$xy$平面上に,直線$\ell:y=-x-2$と点$\mathrm{A}(1,\ 1)$がある.点$\mathrm{A}$からの距離と直線$\ell$からの距離が等しい点の軌跡を曲線$C$とする.以下の問に答えよ.

(1)曲線$C$の方程式を求めよ.
(2)曲線$C$と$x$軸の共有点の座標を求めよ.
(3)曲線$C$と$x$軸で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$を
\[ f(x)=ax^2+bx+c \]
と定める.放物線$y=f(x)$の頂点の$x$座標を$x=1$とする.また,放物線$y=f(x)$と直線$y=x$の交点の$x$座標を$x=2$と$x=-3$とする.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$y=f(x)$と関数$y=|x|$のグラフの交点をすべて求めよ.
(3)放物線$y=f(x)$と関数$y=|x|$のグラフで囲まれた図形の面積$S$を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第5問
$xy$平面上に楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$がある.次の問いに答えよ.

(1)点$\mathrm{P}(a,\ b)$を通る$C$の接線が$2$本あり,それらが直交するとき,$a,\ b$がみたす条件を求めよ.
(2)$C$に外接する長方形のうち,$x$座標が$1$で$y$座標が正である頂点をもつものの面積を求めよ.
筑波大学 国立 筑波大学 2016年 第1問
$k$を実数とする.$xy$平面の曲線$C_1:y=x^2$と$C_2:y=-x^2+2kx+1-k^2$が異なる共有点$\mathrm{P}$,$\mathrm{Q}$を持つとする.ただし点$\mathrm{P}$,$\mathrm{Q}$の$x$座標は正であるとする.また,原点を$\mathrm{O}$とする.

(1)$k$のとりうる値の範囲を求めよ.
(2)$k$が$(1)$の範囲を動くとき,$\triangle \mathrm{OPQ}$の重心$\mathrm{G}$の軌跡を求めよ.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S^2$を$k$を用いて表せ.
(4)$k$が$(1)$の範囲を動くとする.$\triangle \mathrm{OPQ}$の面積が最大となるような$k$の値と,そのときの重心$\mathrm{G}$の座標を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
楕円$\displaystyle \frac{x^2}{9}+y^2=1$を$C$とする.また,座標平面上の点$\mathrm{P}(v,\ w)$を通り,単位ベクトル$\overrightarrow{u}=(\alpha,\ \beta)$を方向ベクトルにもつ直線$\ell$の媒介変数$t$による表示を
\[ x=v+\alpha t,\quad y=w+\beta t \]
とする.直線$\ell$は$t=t_1,\ t_2$において楕円$C$とそれぞれ共有点$\mathrm{Q}$,$\mathrm{R}$をもつとする.ただし,$\alpha>0$,$t_1 \leqq t_2$とする.このとき,次の各問に答えよ.

(1)$t_1+t_2$と$t_1t_2$を$v,\ w,\ \alpha,\ \beta$を用いてそれぞれ表せ.
(2)$|\overrightarrow{\mathrm{PQ|}} \cdot |\overrightarrow{\mathrm{PR|}}$を$v,\ w,\ \alpha,\ \beta$を用いて表せ.
(3)$\alpha=\beta$のとき,$\displaystyle |\overrightarrow{\mathrm{QR|}}=\frac{6}{5}$となる点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。