タグ「座標」の検索結果

15ページ目:全2097問中141問~150問を表示)
岩手大学 国立 岩手大学 2016年 第5問
放物線$y=x^2$と円$\displaystyle x^2+(y-3)^2=\frac{r^2}{4}$について,次の問いに答えよ.ただし,$r$は正の定数である.

(1)$r=6$のとき,放物線と円の共有点の座標をすべて求めよ.
(2)$r$がすべての正の実数値をとって変化するとき,放物線と円の共有点の個数はどのように変わるか,調べよ.
電気通信大学 国立 電気通信大学 2016年 第2問
等比数列$\{a_n\}$と等差数列$\{b_n\}$を次の通りとする.
\[ a_n=\left( \frac{1}{\sqrt{2}} \right)^{n-3},\quad b_n=\frac{3 \pi (n-1)}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
これらを用いて,座標平面上の点$\mathrm{P}_n$を
\[ \mathrm{P}_n (a_n \cos b_n,\ a_n \sin b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}_4$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点であることを示せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さ$l_n$を$n$の式で表せ.
(3)極限値$\displaystyle L=\lim_{n \to \infty} \sum_{k=1}^n l_k$を求めよ.
(4)座標平面上の曲線$C$が媒介変数$t$と定数$\alpha,\ \beta$を用いて,
\[ x=2^{\alpha t+\beta} \cos t,\quad y=2^{\alpha t+\beta} \sin t \]
と表されるとする.曲線$C$が$t=0$で点$\mathrm{P}_1$を通り,$\displaystyle t=\frac{3 \pi}{4}$で点$\mathrm{P}_2$を通るとき,$\alpha,\ \beta$の値を求めよ.
(5)$(4)$で求めた$\alpha,\ \beta$の値に対し,曲線$C$がすべての点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を通ることを示せ.
山口大学 国立 山口大学 2016年 第4問
空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.$\alpha$は$0<\alpha<1$を満たす定数とし,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ次のように定める.
\begin{itemize}
$\mathrm{P}$は$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$の値を最小にする点
$\mathrm{Q}$は$\mathrm{PB}$を$\alpha:1-\alpha$に内分する点
$\mathrm{R}$は$\mathrm{OC}$を$\alpha:1-\alpha$に内分する点
\end{itemize}
このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を求めなさい.
(2)$\mathrm{Q}$,$\mathrm{R}$の座標を$\alpha$を用いてそれぞれ表しなさい.
(3)$\triangle \mathrm{CPR}$と$\triangle \mathrm{BCQ}$の面積をそれぞれ$S_1$,$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を求めなさい.
茨城大学 国立 茨城大学 2016年 第1問
座標平面上において,円$C:x^2-4x+y^2+6y-12=0$上の点$(5,\ 1)$における接線を$\ell_1$とし,点$(1,\ -1)$を通り,直線$\ell_1$に垂直な直線を$\ell_2$とする.次の各問に答えよ.

(1)$2$直線$\ell_1$と$\ell_2$の方程式を求めよ.
(2)直線$\ell_2$が円$C$によって切り取られてできる線分の長さを求めよ.
茨城大学 国立 茨城大学 2016年 第2問
$a,\ b$を実数として,座標空間内に$4$点$\mathrm{A}(3,\ 1,\ 3)$,$\mathrm{B}(2,\ 3,\ 2)$,$\mathrm{C}(3,\ 3,\ 1)$,$\mathrm{D}(2,\ a,\ b)$がある.ただし,$\mathrm{B}$と$\mathrm{D}$は異なる$2$点とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$T$とし,$T$上にあって$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円を$U$とする.次の各問に答えよ.

(1)点$\mathrm{D}$が平面$T$上にあるとき,$a$と$b$の条件を求めて,$ab$平面上に図示せよ.
(2)点$\mathrm{D}$が円$U$の周上にあるとき,点$\mathrm{D}$の座標を求めよ.
茨城大学 国立 茨城大学 2016年 第3問
$n$を正の整数とする.座標平面上において,連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
y \leqq x+n(n+1)
\end{array} \right. \]
の表す領域を$D$とする.次の各問に答えよ.

(1)領域$D$内の,$x$座標と$y$座標がともに整数である点のうち,$x$座標が正であるものの個数$M$を$n$を用いて表せ.
(2)領域$D$内の,$x$座標と$y$座標がともに整数である点のうち,$x$座標が負であるものの個数を$N$とする.$(1)$で求めた$M$に対して$M-N \geqq 1000$となるような最小の$n$を求めよ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。