タグ「平面」の検索結果

9ページ目:全1904問中81問~90問を表示)
千葉大学 国立 千葉大学 2016年 第3問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第1問
空間内の平面$\alpha$上に平行四辺形$\mathrm{OABC}$があり,
\[ \mathrm{OA}=2,\quad \mathrm{OC}=3,\quad \angle \mathrm{AOC}=\frac{\pi}{3} \]
とする.点$\mathrm{C}$を通り$\alpha$に垂直な直線上に点$\mathrm{D}$があり,
\[ \mathrm{CD}=1 \]
とする.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{D}$を通る平面を$\beta$とし,$\mathrm{C}$を通り$\beta$に垂直な直線と$\beta$との交点を$\mathrm{H}$とする.

(1)$\triangle \mathrm{OBD}$の面積を求めよ.
(2)線分$\mathrm{CH}$の長さを求めよ.
高知大学 国立 高知大学 2016年 第4問
座標平面上に放物線$\displaystyle C:y=\frac{1}{6 \sqrt{3}}x^2$を考える.次の問いに答えよ.

(1)$C$と$2$点$\displaystyle \left( -3,\ \frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接している円の方程式を求めよ.
(2)$C$と$(1)$の円で囲まれる部分の面積を求めよ.
(3)$C$と点$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接し,$y$軸にも接している円の方程式を求めよ.
(4)$C$と$y$軸および$(3)$の円で囲まれる部分の面積を求めよ.
和歌山大学 国立 和歌山大学 2016年 第3問
$s,\ t$を実数とする.平面上の異なる$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{P}$は$\overrightarrow{\mathrm{PC}}=s \overrightarrow{\mathrm{PA}}+t \overrightarrow{\mathrm{PB}}$を満たしている.また,点$\mathrm{C}$および点$\mathrm{P}$は直線$\mathrm{AB}$上にない.線分$\mathrm{BC}$を$1:3$に内分する点$\mathrm{Q}$が直線$\mathrm{AP}$上にあるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$を用いて表し,$t$の値を求めよ.
(2)$\overrightarrow{\mathrm{AQ}}=2 \overrightarrow{\mathrm{AP}}$を満たすとき,$s$の値を求めよ.
(3)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内部にあるとき,$s$のとり得る値の範囲を求めよ.ただし,三角形の内部に周は含まれないものとする.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。