タグ「平面」の検索結果

19ページ目:全1904問中181問~190問を表示)
早稲田大学 私立 早稲田大学 2016年 第2問
座標空間において,原点$\mathrm{O}$と点$\mathrm{P}(0,\ 0,\ 2)$を直径の両端とする球面を$\mathrm{S}$とする.また$xy$平面上に放物線$\mathrm{C}:y=x^2-2$を描き,$\mathrm{C}$上に点$\mathrm{R}$をとる.線分$\mathrm{PR}$と球面$\mathrm{S}$の交点を$\mathrm{Q}$とし,$\mathrm{Q}$から$xy$平面に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問に答えよ.

(1)原点$\mathrm{O}$から点$\mathrm{R}$までの距離を$r$とするとき,線分$\mathrm{QR}$の長さを$r$を用いて表せ.
(2)線分$\mathrm{QH}$の長さを$h$,点$\mathrm{R}$の座標を$(x,\ y,\ 0)$とするとき,$h \geqq 1$である場合に$x$がとる値の範囲を求めよ.
(3)点$\mathrm{R}$が放物線$\mathrm{C}$上のすべての点を動くとき,$h$を最小にする$\mathrm{R}$の座標を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2016年 第2問
$2$つの複素数$w,\ z (z \neq 0)$の間に
\[ w=z-\frac{7}{4z} \]
という関係がある.ここで$w=x+yi$($x,\ y$は実数,$i$は虚数単位)と表すとき,以下の問に答えよ.

(1)複素数平面上で$z$が原点$\mathrm{O}$を中心として半径$\displaystyle \frac{7}{2}$の円周上を動くとする.このとき$w$が描く曲線$C$を座標平面上の$x$と$y$の方程式で表示せよ.
(2)$(1)$で得られた曲線$C$上の点$\mathrm{P}(s,\ t) (s>0,\ t>0)$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$,$y$軸と交わる点を$\mathrm{R}$とする.このとき原点$\mathrm{O}$と$\mathrm{Q}$と$\mathrm{R}$とを頂点とする直角三角形$\triangle \mathrm{OQR}$を$y$軸のまわりに$1$回転してできる円錐の体積の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
座標平面上の動点$\mathrm{P}_t(x,\ y)$の座標が,$t$の関数
\[ x=e^{-t} \cos t,\quad y=e^{-t} \sin t \]
で与えられている.また$\mathrm{O}$を原点とする.実数$a,\ b$で$0<b-a<2\pi$であるものに対して,線分$\mathrm{OP}_a$と,動点$\mathrm{P}_t$が$t=a$から$t=b$まで動くときに描く曲線と,線分$\mathrm{OP}_b$とによって囲まれる部分の面積を$S(a,\ b)$とおく.次の問に答えよ.

(1)$f(t)=S(0,\ t)$とする.導関数$\displaystyle \frac{d}{dt}f(t)$を求めよ.
(2)自然数$n$に対して,$\displaystyle U(n)=S \left( \frac{n-1}{2} \pi,\ \frac{n}{2} \pi \right)$とおく.$U(n)$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty U(n)$の和を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
平面上に点$\mathrm{A}_0,\ \mathrm{B}_0,\ \mathrm{C}_0,\ \mathrm{A}_1,\ \mathrm{B}_1,\ \mathrm{C}_1,\ \mathrm{A}_2,\ \mathrm{B}_2,\ \mathrm{C}_2,\ \mathrm{A}_3,\ \mathrm{B}_3,\ \mathrm{C}_3,\ \cdots$があり,次の条件$(ⅰ)$,$(ⅱ)$を満たしている.

(i) $\mathrm{A}_0 \mathrm{B}_0=5$,$\mathrm{B}_0 \mathrm{C}_0=7$,$\mathrm{C}_0 \mathrm{A}_0=8$
(ii) $n=0,\ 1,\ 2,\ 3,\ \cdots$に対し,

$\mathrm{A}_{n+1}$は,直線$\mathrm{B}_n \mathrm{C}_n$に関して$\mathrm{A}_n$と対称な点であり,
$\mathrm{B}_{n+1}$は,直線$\mathrm{A}_{n+1} \mathrm{C}_n$に関して$\mathrm{B}_n$と対称な点であり,
$\mathrm{C}_{n+1}$は,直線$\mathrm{A}_{n+1} \mathrm{B}_{n+1}$に関して$\mathrm{C}_n$と対称な点である.

次の設問に答えよ.


(1)$\mathrm{A}_0 \mathrm{A}_1$を求めよ.
(2)$\mathrm{A}_0 \mathrm{A}_2$を求めよ.
(3)$\mathrm{A}_0 \mathrm{A}_{2016}$を求めよ.
同志社大学 私立 同志社大学 2016年 第2問
平面上の$\triangle \mathrm{OAB}$において,$\angle \mathrm{OAB}$の二等分線と線分$\mathrm{OB}$との交点を$\mathrm{P}$,$\angle \mathrm{OBA}$の二等分線と線分$\mathrm{OA}$との交点を$\mathrm{Q}$とおく.直線$\mathrm{AP}$と直線$\mathrm{BQ}$との交点を$\mathrm{R}$とおく.$\mathrm{OA}=x$,$\mathrm{OB}=y$,$\mathrm{AB}=1$とし,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と平行で向きが同じである単位ベクトルをそれぞれ$\overrightarrow{u}$,$\overrightarrow{v}$とおく.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ y,\ \overrightarrow{v}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を$x,\ y,\ \overrightarrow{u},\ \overrightarrow{v}$を用いて表せ.
(3)直線$\mathrm{OR}$と直線$\mathrm{AB}$が垂直であるとき,直線$\mathrm{AB}$と直線$\mathrm{PQ}$が平行となることを示せ.
(4)$2 \overrightarrow{u} \cdot \overrightarrow{v}=-1$であり,$x,\ y$が変化するとき,$\overrightarrow{\mathrm{OR}}$の大きさが最大となるときの$x,\ y$の値と$\overrightarrow{\mathrm{OR}}$の大きさをそれぞれ求めよ.
久留米大学 私立 久留米大学 2016年 第1問
座標平面上の$2$直線$mx-y+1=0$,$x+my-m-2=0$の交点を$\mathrm{P}$とする.ここで,$m$は実数とする.

(1)$m$の値が変化するとき,点$\mathrm{P}$が描く軌跡の方程式は$[$1$]$である.ただし,点$(0,\ 1)$を含まない.
(2)$m$の値が$\displaystyle \frac{1}{\sqrt{3}} \leqq m \leqq 1$のとき,点$\mathrm{P}$が描く曲線の長さは$[$2$]$である.
久留米大学 私立 久留米大学 2016年 第4問
座標平面上で,関数$f(x)=\sqrt{6-x}$で表される曲線$C:y=f(x)$を考える.$4 \leqq t \leqq 5$を満たす実数$t$に対して,曲線$C$上の点$(t,\ f(t))$と$(t,\ 0)$,$(2,\ 0)$および$(2,\ f(t))$の$4$つの点を頂点とする四角形の面積を$S(t)$とする.

(1)$S(t)$を$t$を用いて表すと$[$9$]$となる.
(2)$S(t)$は$t=[$10$]$のとき最大値$[$11$]$をとり,$t=[$12$]$のとき最小値$[$13$]$をとる.
(3)区間$[4,\ 5]$を$n$等分してその端点と分点を小さい順に$t_0=4,\ t_1,\ t_2,\ \cdots,\ t_n=5$とする.極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n S(t_k)$の値を求めると$[$14$]$となる.ただし,$n$は正の整数とする.
日本女子大学 私立 日本女子大学 2016年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{R}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面が辺$\mathrm{AC}$と交わる点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)$5$つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$,$\overrightarrow{\mathrm{OR}}$,$\overrightarrow{\mathrm{QP}}$,$\overrightarrow{\mathrm{QR}}$を,それぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$の式で表せ.
(2)$\overrightarrow{\mathrm{QS}}=k \overrightarrow{\mathrm{QP}}+l \overrightarrow{\mathrm{QR}}$を満たす定数$k$と$l$の値,および$\mathrm{AS}:\mathrm{SC}$を求めよ.
学習院大学 私立 学習院大学 2016年 第2問
平面上の点$\mathrm{P}(s,\ t)$が楕円$\displaystyle C:\frac{x^2}{8}+\frac{y^2}{2}=1$上を動くとき,$\displaystyle \frac{t-2}{s-4}$の最大値を求めよ.また,最大値を与える$s,\ t$を求めよ.
学習院大学 私立 学習院大学 2016年 第4問
平面上で,曲線$\displaystyle C:y=\frac{2}{x^2+1}$を考える.

(1)$C$は変曲点を$2$つもつ.その$2$点の座標を求めよ.
(2)$(1)$で求めた$2$点での$C$の接線を,それぞれ$L_1,\ L_2$とする.$2$直線$L_1,\ L_2$と$C$とで囲まれた部分の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。