タグ「平面」の検索結果

11ページ目:全1904問中101問~110問を表示)
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
香川大学 国立 香川大学 2016年 第5問
$a>0$とし,座標平面上の点$\mathrm{A}(a,\ 0)$から曲線$\displaystyle C:y=\frac{1}{x}$に引いた接線を$\ell$とする.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および直線$x=a$で囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(4,\ 0)$,$\mathrm{P}(t,\ 0)$をとる.ただし,$0<t<4$とする.さらに放物線$C:y=-x^2+7x$上に$2$点$\mathrm{B}(4,\ 12)$,$\mathrm{Q}(t,\ -t^2+7t)$をとる.$\triangle \mathrm{APB}$の面積を$f(t)$とし,放物線$C$,線分$\mathrm{PQ}$,線分$\mathrm{OP}$によって囲まれた図形の面積を$g(t)$とする.このとき,次の問に答えよ.

(1)$f(t)$を$t$を用いて表せ.
(2)$g(t)$を$t$を用いて表せ.
(3)$h(t)=f(t)+g(t)$とおく.$0<t<4$における$h(t)$の最小値とそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
(4)$t<1$のとき,$\ell$と$C$が$t<s<1$を満たす点$\mathrm{U}(s,\ f(s))$で交わるような$t$の範囲を求めよ.またそのとき,線分$\mathrm{PU}$と$C$とで囲まれる部分の面積と,線分$\mathrm{UR}$と$C$と直線$x=1$とで囲まれる部分の面積が等しくなるような$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第1問
$a$を正の実数とする.

(1)平面上の点$(x,\ y)$は$x+y=a$,$x>0$,$y>0$の範囲を動くものとする.このとき,
\[ x \log x+y \log y \]
の最小値を求めよ.
(2)空間上の点$(x,\ y,\ z)$は$x+y+z=a$,$x>0$,$y>0$,$z>0$の範囲を動くものとする.このとき,
\[ x \log x+y \log y+z \log z \]
の最小値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。