タグ「平行」の検索結果

2ページ目:全255問中11問~20問を表示)
香川大学 国立 香川大学 2016年 第2問
座標平面上の放物線$y=-x^2+2$を$C_1$とし,$0<t<\sqrt{2}$に対して,$C_1$上の点$\mathrm{P}(t,\ -t^2+2)$をとる.点$\mathrm{P}$を通り$x$軸に平行な直線を$\ell$とする.また,点$\mathrm{P}$を通り,$y$軸を軸とし原点を頂点とする放物線を$C_2$とする.このとき,次の問に答えよ.

(1)放物線$C_2$の方程式を求めよ.
(2)放物線$C_2$と直線$\ell$で囲まれた部分の面積$S_2(t)$を$t$を用いて表せ.
(3)関数$S_2(t)$の$0<t<\sqrt{2}$における最大値とそのときの$t$を求めよ.
(4)放物線$C_1$と直線$\ell$で囲まれた部分の面積を$S_1(t)$とするとき,$S_1(t)=S_2(t)$となる$t$を求めよ.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
長崎大学 国立 長崎大学 2016年 第3問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
島根大学 国立 島根大学 2016年 第1問
$n$を自然数とする.下図のように,$3$本の平行な道路$\ell_1$,$\ell_2$,$\ell_3$があり,$\ell_1,\ \ell_2$をつなぐ縦の道と,$\ell_2,\ \ell_3$をつなぐ縦の道がそれぞれ$n$本ずつ,交互に配置されているとする.
(図は省略)
次の規則に従い図の$\mathrm{X}$から出発して$\mathrm{P}_n$,$\mathrm{Q}_n$,$\mathrm{R}_n$に到達する経路の個数をそれぞれ$a_n$,$b_n$,$c_n$とする.


\mon[(規則)] $\ell_1$,$\ell_2$,$\ell_3$は一方通行であり,西方向には進むことができない.また,一度通った縦の道を再び通ることもできない.

次の問いに答えよ.

(1)$a_2,\ b_2$を求めよ.
(2)$a_{n+1}$を$a_n,\ b_n$を用いて表せ.
(3)$b_n=c_n$が成り立つことを証明せよ.
(4)$a_1,\ b_1,\ a_2,\ b_2,\ \cdots,\ a_k,\ b_k,\ \cdots$と順に並べてできる数列を$\{f_n\} (n=1,\ 2,\ 3,\ \cdots)$とする.$f_{n+2}$を$f_n$,$f_{n+1}$を用いて表せ.また,それを用いて$a_7$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第2問
平面上に$\mathrm{OA}=4$,$\mathrm{AB}=9$,$\mathrm{OB}=7$となるような$\triangle \mathrm{OAB}$があり,$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$と$k \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$が平行になるような実数$k$を求めよ.
(3)$(2)$の結果を用いて,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{OC|}}$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
スポンサーリンク

「平行」とは・・・

 まだこのタグの説明は執筆されていません。