タグ「小さい」の検索結果

3ページ目:全99問中21問~30問を表示)
長崎大学 国立 長崎大学 2015年 第4問
自然対数の底を$e$とする.区間$x \geqq 0$上で定義される関数
\[ f(x)=e^{-x} \sin x \]
を考え,曲線$y=f(x)$と$x$軸との交点を,$x$座標の小さい順に並べる.それらを,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.点$\mathrm{P}_0$は原点である.

自然数$n (n=1,\ 2,\ 3,\ \cdots)$に対して,線分$\mathrm{P}_{n-1} \mathrm{P}_n$と$y=f(x)$で囲まれた図形の面積を$S_n$とする.以下の問いに答えよ.

(1)点$\mathrm{P}_n$の$x$座標を求めよ.
(2)面積$S_n$を求めよ.
(3)$\displaystyle I_n=\sum_{k=1}^n S_k$とする.このとき,$I_n$と$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第5問
$m \geqq 1$を整数とする.関数$f(x)=(\pi-x) \sin mx (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)=0$となるすべての$x (0 \leqq x \leqq \pi)$の値を,小さい順に$x_1,\ x_2,\ \cdots,\ x_N$で表す.このとき,$N$を$m$の式で表し,$x_k (k=1,\ 2,\ \cdots,\ N)$を$k$と$m$の式で表せ.
(2)$(1)$で定めた$x_k$と$x_{k+1} (k=1,\ 2,\ \cdots,\ N-1)$に対し,曲線$y=f(x) (x_k \leqq x \leqq x_{k+1})$と$x$軸で囲まれた図形の面積を$S_k$とするとき,$S_k$を$k$と$m$の式で表せ.
(3)$(2)$で求めた面積$S_k$の$k=1$から$N-1$までの和$\displaystyle \sum_{k=1}^{N-1} S_k$を求めよ.
東京電機大学 私立 東京電機大学 2015年 第5問
半円$C_1:x^2+y^2=16 (y \geqq 0)$と放物線$C_2:y=x^2+a$について,次の問に答えよ.

(1)$C_1$と$C_2$が相異なる$2$つの共有点をもつときの$a$の値の範囲を求めよ.
(2)$C_1$と$C_2$が$2$つの共有点$\mathrm{A}$,$\mathrm{B}$をもち,$\mathrm{A}$,$\mathrm{B}$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$において$\angle \mathrm{O}={60}^\circ$であるとき,点$\mathrm{A}$,$\mathrm{B}$の座標および$a$の値を求めよ.ただし,$\mathrm{A}$の$x$座標は$\mathrm{B}$の$x$座標より小さいとする.
(3)$(2)$のとき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
立教大学 私立 立教大学 2015年 第4問
$k$を実数とする.曲線$C:y=(x^2-1)^2$と直線$\ell:y=k$について,次の問いに答えよ.

(1)曲線$C$と直線$\ell$の共有点が異なる$4$点となるような$k$の値の範囲を求めよ.
(2)$k$が$(1)$で求めた範囲にあるとき,曲線$C$と直線$\ell$の共有点の$x$座標を小さい順に$x_1$,$x_2$,$x_3$,$x_4$とする.$x_1$,$x_2$,$x_3$,$x_4$をそれぞれ$k$を用いて表せ.
(3)$k$が$(1)$で求めた範囲にあるとき,曲線$C$と直線$\ell$で囲まれた部分を$y$軸のまわりに$1$回転してできる立体の体積$V$を$k$を用いて表せ.
(4)$(3)$で求めた体積$V$の最小値と,最小値を与える$k$の値をそれぞれ求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
西南学院大学 私立 西南学院大学 2015年 第2問
$0 \leqq x<\pi$のとき,以下の問に答えよ.

(1)$\sin 2x-\cos x=0$の解は,小さい順に$\displaystyle \frac{[シ]}{[ス]}\pi,\ \frac{[セ]}{[ソ]}\pi,\ \frac{[タ]}{[チ]}\pi$である.

(2)$\sin 2x \geqq \cos 2x$の解は,$\displaystyle \frac{[ツ]}{[テ]} \pi \leqq x \leqq \frac{[ト]}{[ナ]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
東京理科大学 私立 東京理科大学 2015年 第2問
$a>0$を定数とし,座標平面上の点$\mathrm{P}(p,\ 0)$から放物線$C:y=ax^2+2a$に$2$本の接線$\mathrm{PQ}_1$,$\mathrm{PQ}_2$を引く.ここで$\mathrm{Q}_1$,$\mathrm{Q}_2$は接点で,$\mathrm{Q}_1$の$x$座標$q_1$は$\mathrm{Q}_2$の$x$座標$q_2$より小さいとする.

(1)$q_1$と$q_2$を,$p$を用いて表せ.
(2)直線$\mathrm{Q}_1 \mathrm{Q}_2$の方程式を,$a$と$p$を用いて表せ.
(3)$S_1$を直線$\mathrm{Q}_1 \mathrm{Q}_2$と曲線$C$で囲まれた部分の面積,$S_2$を曲線$C$と線分$\mathrm{PQ}_1$,$\mathrm{PQ}_2$で囲まれた部分の面積とする.$S_1$と$S_2$を,$a$と$p$を用いて表し,$\displaystyle \frac{S_1}{S_2}$の値を求めよ.
(4)$\mathrm{PQ}_1 \perp \mathrm{PQ}_2$となるとき,$a$の値を求めよ.
山口東京理科大学 私立 山口東京理科大学 2015年 第4問
$5$個の連続な自然数の和が$1000$であるとき,この連続な自然数の一番小さい数は$[シ][ス][セ]$である.
愛知工業大学 私立 愛知工業大学 2015年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2x-7<0$をみたす実数$x$の範囲は$[ア]$である.また,実数$x$に対して,$x$を超えない最大の整数を$[x]$とすると,${[x]}^2-2[x]-7<0$をみたす実数$x$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=1,\quad a_2=\frac{4}{3},\quad 3a_{n+2}-4a_{n+1}+a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,数列$\{a_{n+1}-pa_n\}$が公比$q$の等比数列になるような定数$p,\ q$の組は$(p,\ q)=[ウ]$であり,一般項$a_n$は$a_n=[エ]$である.
(3)$\displaystyle \frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sqrt{3}-2$となるのは$\tan \theta=[オ]$のときであり,これをみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$の値は$\theta=[カ]$である.
(4)$a$を実数とし,$\displaystyle f(a)=\int_{-1}^2 {(x-a |x|)}^2 \, dx$とする.$f(a)$は$a=[キ]$のとき,最小値$[ク]$をとる.
(5)$\tan x=t$とおくとき,$\sin 2x$を$t$で表すと$\sin 2x=[ケ]$である.また,$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx=[コ]$である.

\mon[(注)] 次の$(6),\ (7)$は選択問題である.

(6)大小$2$つのさいころを投げて,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$2$次方程式$x^2+ax+b=0$が$2$つの異なる実数解をもつ確率は$[サ]$,重解をもつ確率は$[シ]$,実数解をもたない確率は$[ス]$である.
(7)平面上で,半径$3$の円$C_1$と半径$5$の円$C_2$が点$\mathrm{P}$で外接している.$1$本の直線が$\mathrm{P}$と異なる点$\mathrm{Q}$,$\mathrm{R}$で円$C_1,\ C_2$とそれぞれ接しているとき,$\mathrm{QR}=[セ]$である.また,直線$\mathrm{QP}$と円$C_2$との,$\mathrm{P}$と異なる交点を$\mathrm{S}$とするとき,$\mathrm{SR}=[ソ]$である.
スポンサーリンク

「小さい」とは・・・

 まだこのタグの説明は執筆されていません。