タグ「小さい」の検索結果

1ページ目:全99問中1問~10問を表示)
群馬大学 国立 群馬大学 2016年 第2問
次の$6$つの数
\[ \left( \sqrt{10}-\sqrt{3} \right)^{\frac{1}{3}},\quad \log_{\sqrt{3}} \frac{7}{4},\quad \frac{7}{9},\quad \log_7 5,\quad \frac{1}{\log_6 12},\quad \log_{(\sqrt{15}-\sqrt{10})}12 \]
について答えよ.

(1)$6$つの数のうち負の数はどれか,すべて答えよ.
(2)$6$つの数のうち$1$以上の数はどれか,すべて答えよ.
(3)$6$つの数のうち,$(1)$と$(2)$以外の数を左から小さい順に並べよ.
岩手大学 国立 岩手大学 2016年 第3問
次の問いに答えよ.

(1)ユークリッドの互除法を用いて,$89$と$29$の最大公約数を求めよ.
(2)$2$元$1$次不定方程式$89x+29y=1$の整数解を$1$組求めよ.
(3)$2$元$1$次不定方程式$89x+29y=-20$の整数解として現れる$x$の値のうち,正のものを小さい順に$x_1,\ x_2,\ x_3,\ \cdots$とする.このとき,自然数$m$に対して,$x_m$を$m$で表せ.
(4)$(3)$で定めた$x_m$に対し,$89x_m+29y=-20$を満たす$y$の値を$y_m$とするとき,自然数$n$に対して,$\displaystyle \sum_{m=1}^n (3x_m+y_m)^2$を$n$で表せ.
熊本大学 国立 熊本大学 2016年 第3問
自然数$a$に対して
\[ S(a)=\sum_{k=1}^a \frac{1}{\sqrt{k+1}+\sqrt{k}} \]
とおく.以下の問いに答えよ.

(1)和$S(a)$を求めよ.
(2)$S(a)$が整数となる自然数$a$を小さい順に並べた数列を
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.一般項$a_n$を求めよ.
(3)$(2)$の数列$\{a_n\}$について,$a_n (n=1,\ 2,\ 3,\ \cdots)$を$4$で割った余りは$0$か$3$であることを示せ.
(4)$(2)$の数列$\{a_n\}$と自然数$N$に対して和$\displaystyle \sum_{n=1}^N \frac{1}{a_n}$を求めよ.
高知大学 国立 高知大学 2016年 第1問
次の問いに答えよ.

(1)$\log_4 6,\ \log_8 9,\ \log_9 8$を小さい順にならべよ.
(2)関数$\displaystyle y=\log_{\frac{1}{2}} (5-x)+\log_{\frac{1}{8}} (x-1)^3$の最小値を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
自然数$a$に対して
\[ S(a)=\sum_{k=1}^a \frac{1}{\sqrt{k+1}+\sqrt{k}} \]
とおく.以下の問いに答えよ.

(1)和$S(a)$を求めよ.
(2)$S(a)$が整数となる自然数$a$を小さい順に並べた数列を
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.一般項$a_n$を求めよ.
(3)$(2)$の数列$\{a_n\}$について,$a_n (n=1,\ 2,\ 3,\ \cdots)$を$4$で割った余りは$0$か$3$であることを示せ.
(4)$(2)$の数列$\{a_n\}$と自然数$N$に対して和$\displaystyle \sum_{n=1}^N \frac{1}{a_n}$を求めよ.
岩手大学 国立 岩手大学 2016年 第3問
次の問いに答えよ.

(1)ユークリッドの互除法を用いて,$89$と$29$の最大公約数を求めよ.
(2)$2$元$1$次不定方程式$89x+29y=1$の整数解を$1$組求めよ.
(3)$2$元$1$次不定方程式$89x+29y=-20$の整数解として現れる$x$の値のうち,正のものを小さい順に$x_1,\ x_2,\ x_3,\ \cdots$とする.このとき,自然数$m$に対して,$x_m$を$m$で表せ.
(4)$(3)$で定めた$x_m$に対し,$89x_m+29y=-20$を満たす$y$の値を$y_m$とするとき,自然数$n$に対して,$\displaystyle \sum_{m=1}^n (3x_m+y_m)^2$を$n$で表せ.
岩手大学 国立 岩手大学 2016年 第3問
次の問いに答えよ.

(1)ユークリッドの互除法を用いて,$89$と$29$の最大公約数を求めよ.
(2)$2$元$1$次不定方程式$89x+29y=1$の整数解を$1$組求めよ.
(3)$2$元$1$次不定方程式$89x+29y=-20$の整数解として現れる$x$の値のうち,正のものを小さい順に$x_1,\ x_2,\ x_3,\ \cdots$とする.このとき,自然数$m$に対して,$x_m$を$m$で表せ.
宮崎大学 国立 宮崎大学 2016年 第3問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第2問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第4問
サイコロを何回か振って最後に出た目を得点とするゲームを行う.

(1)サイコロを$1$回だけ振ることができるときの得点の期待値$E_1$を求めよ.
(2)サイコロを$2$回まで振ることができるとき,$1$回目に$m$以上の目が出たらそこでやめ,$m$より小さい目が出たら$2$回目を振ることにする.このときの得点の期待値$E_2(m)$を$m$を用いて表し,$E_2(m)$が最大となる$m$を求めよ.
(3)$n$を$2$以上の自然数,$m_1,\ \cdots,\ m_{n-1}$を$6$以下の自然数とする.$n$回までサイコロを振ることができるとき,$i$回目に$m_{n-i}$以上の目が出たらそこでやめ,$m_{n-i}$より小さい目が出たら$i+1$回目を振るという規則でサイコロを振り続ける.ただし,$n$回サイコロを振ったらそこでやめる.このときの得点の期待値を$E_n(m_1,\ \cdots,\ m_{n-1})$とする.以下の問いに答えよ.

(i) $E_3(m_1,\ m_2)$を$E_2(m_1)$,$m_2$を用いて表し,$E_3(m_1,\ m_2)$が最大となる$m_1,\ m_2$とそのときの$E_3(m_1,\ m_2)$の値を求めよ.
(ii) $n \geqq 4$とする.$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$の最大値を$e_{n-1}$とすると,$E_n(m_1,\ \cdots,\ m_{n-1})$が最大となるのは,$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$が$e_{n-1}$となり,かつ$m_{n-1}$が$e_{n-1}$以上の最小の自然数となるときである.このことを示せ.

ただし,得点が$k$となる確率を$p(k)$としたとき,
\[ p(1)+2p(2)+3p(3)+4p(4)+5p(5)+6p(6) \]
を得点の期待値とよぶ.
スポンサーリンク

「小さい」とは・・・

 まだこのタグの説明は執筆されていません。