タグ「導関数」の検索結果

4ページ目:全552問中31問~40問を表示)
茨城大学 国立 茨城大学 2016年 第1問
$a$を定数とし,関数$f(x)=(x-a)e^{\frac{x^2}{2}}$で表される曲線$y=f(x)$を$C$とする.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$が極値を持たないために$a$が満たすべき条件を求めよ.
(3)曲線$C$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(4)$(3)$で求めた接線が原点を通るような$t$の値を考える.すべての実数の中で,そのような$t$の値が$3$つあるために$a$が満たすべき条件を求めよ.
岩手大学 国立 岩手大学 2016年 第5問
関数$F(x)$と連続関数$f(t)$の関係が
\[ F(x)=\int_{-x}^x f(t) \, dt \]
で与えられるとき,次の問いに答えよ.

(1)$f(t)=e^t-e^{-t}$のとき,$F(x)$を求めよ.
(2)$2$つの連続関数$g(t)$,$h(t)$において,$g(-t)=g(t)$,$h(-t)=-h(t)$が常に成り立つとする.$f(t)=g(t)+h(t)$とするとき,$F^{\prime}(x)$を求めよ.
(3)$f(t)=t^2-1+(e^t-e^{-t}) \cos t$のとき,$x>0$における$F(x)$の最小値を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
山形大学 国立 山形大学 2016年 第2問
すべての実数$x$に対して微分可能な関数$f(x)$が等式
\[ e^{-x}f(x)+\int_0^x e^{-t} f(t) \, dt=1+e^{-2x}(3 \sin x-\cos x) \]
を満たすとき,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$f(0)$を求めよ.
(2)導関数$f^\prime(x)$を求めよ.
(3)$e^{-x} \sin x$の導関数を求めよ.さらに,$f(x)$を求めよ.
電気通信大学 国立 電気通信大学 2016年 第1問
関数
\[ f(x)=2 \sin x+\sqrt{6} \sin 2x \]
について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$および不定積分$\displaystyle \int f(x) \, dx$を求めよ.ただし,積分定数は省略してもよい.
(2)区間$0<x<\pi$において$f(x)=0$となる$x$の値を$\alpha$とする.このとき,$\cos \alpha$と$\cos 2 \alpha$の値を求めよ.
(3)区間$0<x<\pi$において$f^\prime(x)=0$となる$x$の値を$\beta,\ \gamma (\beta<\gamma)$とする.このとき,$\cos \beta$と$\cos \gamma$の値を求めよ.
(4)区間$0 \leqq x \leqq \pi$における$f(x)$の最大値を求めよ.
(5)曲線$y=f(x) (0 \leqq x \leqq \pi)$と$x$軸で囲まれた$2$つの部分の面積の和$S$を求めよ.
電気通信大学 国立 電気通信大学 2016年 第4問
関数
\[ f(x)=\frac{\log x}{\sqrt{x}} \quad (x>0) \]
に対して,曲線$C:y=f(x)$を考える.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.

(1)導関数$f^\prime(x)$を求めよ.さらに,$f(x)$の最大値とそのときの$x$の値$x_0$を求めよ.
(2)曲線$C$,$x$軸および直線$x=e$で囲まれた図形を$D$とする.$D$の面積$S$を求めよ.
(3)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
(4)曲線$C$上の点$(t,\ f(t))$における接線$\ell$を考える.$t>x_0$のとき,接線$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.原点を$\mathrm{O}$として,三角形$\mathrm{OPQ}$の面積$g(t)$を$t$の式で表せ.
(5)極限値$\displaystyle \lim_{t \to \infty} \frac{g(t)}{\sqrt{t} \log t}$を求めよ.
富山大学 国立 富山大学 2016年 第1問
次の問いに答えよ.

(1)$1$次不定方程式$17x+22y=1$の整数解をすべて求めよ.
(2)$2$次方程式$x^2+Ax+B=0$の$2$つの解$\alpha,\ \beta$は
\[ a \neq 0,\quad \beta \neq 0,\quad \frac{1}{\alpha}+\frac{1}{\beta}=2,\quad \frac{1}{\alpha^3}+\frac{1}{\beta^3}=3 \]
を満たすとする.このとき,$A,\ B$の値を求めよ.
(3)関数$y=x^{\sqrt{x}} (x>0)$の導関数を求めよ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
富山大学 国立 富山大学 2016年 第1問
関数$f(x),\ g(x)$に対して,$\displaystyle h(x)=\int_0^x f(x-t)g(t) \, dt$で定義される関数$h(x)$を$(f * g)(x)$と書くことにする.このとき,次の問いに答えよ.

(1)$(f * g)(x)=(g * f)(x)$が成り立つことを示せ.
(2)$g(x)=e^{-x}$とし,関数$f_1(x),\ f_2(x),\ \cdots$を
\[ f_1(x)=1-e^{-x},\quad f_n(x)=(f_{n-1} * g)(x) \quad (n=2,\ 3,\ \cdots) \]
によって定義する.

(i) 整数$n$が$2$以上のとき,${f_n}^\prime(x)$を$f_n(x),\ f_{n-1}(x)$を用いて表せ.
(ii) $h_n(x)=e^x {f_n}^\prime(x) (n=1,\ 2,\ \cdots)$とおくとき,$3$以上の整数$n$に対して,${h_n}^\prime(x)$を$h_{n-1}(x)$を用いて表せ.
(iii) $h_n(x)$を求めよ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。