タグ「対称」の検索結果

2ページ目:全105問中11問~20問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2016$の正の約数は全部で$[ア]$個あり,それらの平均は$[イ]$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上に$3$点$\mathrm{P}_0(1,\ 0)$,$\mathrm{P}_1(\cos \theta,\ \sin \theta)$,$\mathrm{P}_2(\cos 2\theta,\ \sin 2\theta)$がある.$x$軸に関して,点$\mathrm{P}_2$,$\mathrm{P}_1$と対称な点をそれぞれ$\mathrm{P}_3$,$\mathrm{P}_4$とし,さらに,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積を$S_1(\theta)$,三角形$\mathrm{P}_0 \mathrm{P}_1 \mathrm{P}_4$の面積を$S_2 (\theta)$とする.


(i) $\displaystyle S_1 \left( \frac{\pi}{3} \right)=[ウ]$である.

(ii) $\displaystyle \lim_{\theta \to +0} \frac{S_1(\theta)}{S_2(\theta)}=[エ]$である.

(iii) $S_1(\theta)$は$\cos \theta=[オ]$のとき最大値$[カ]$をとる.
早稲田大学 私立 早稲田大学 2016年 第3問
平面上に点$\mathrm{A}_0,\ \mathrm{B}_0,\ \mathrm{C}_0,\ \mathrm{A}_1,\ \mathrm{B}_1,\ \mathrm{C}_1,\ \mathrm{A}_2,\ \mathrm{B}_2,\ \mathrm{C}_2,\ \mathrm{A}_3,\ \mathrm{B}_3,\ \mathrm{C}_3,\ \cdots$があり,次の条件$(ⅰ)$,$(ⅱ)$を満たしている.

(i) $\mathrm{A}_0 \mathrm{B}_0=5$,$\mathrm{B}_0 \mathrm{C}_0=7$,$\mathrm{C}_0 \mathrm{A}_0=8$
(ii) $n=0,\ 1,\ 2,\ 3,\ \cdots$に対し,

$\mathrm{A}_{n+1}$は,直線$\mathrm{B}_n \mathrm{C}_n$に関して$\mathrm{A}_n$と対称な点であり,
$\mathrm{B}_{n+1}$は,直線$\mathrm{A}_{n+1} \mathrm{C}_n$に関して$\mathrm{B}_n$と対称な点であり,
$\mathrm{C}_{n+1}$は,直線$\mathrm{A}_{n+1} \mathrm{B}_{n+1}$に関して$\mathrm{C}_n$と対称な点である.

次の設問に答えよ.


(1)$\mathrm{A}_0 \mathrm{A}_1$を求めよ.
(2)$\mathrm{A}_0 \mathrm{A}_2$を求めよ.
(3)$\mathrm{A}_0 \mathrm{A}_{2016}$を求めよ.
京都薬科大学 私立 京都薬科大学 2016年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$1$から$6$までの数字が$1$つずつ書かれた赤球が$6$個入った袋$\mathrm{A}$と,$1$から$6$までの数字が$1$つずつ書かれた白球が$6$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$k$となる場合の数を$f(k)$で表す.このとき,$xy$平面上の点$(k,\ f(k))$は,直線$x=[ア]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[イ]$である.
(2)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個入った袋$\mathrm{A}$と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$l$となる場合の数を$g(l)$で表す.このとき,$xy$平面上の点$(l,\ g(l))$は,直線$x=[ウ]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[エ]$である.
(3)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{A}$と,$1$から$2N$までの数字が$1$つずつ書かれた青球が$2N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$m$となる場合の数を$h(m)$で表す.このとき,$xy$平面上の点$(m,\ h(m))$が並ぶ直線の方程式は以下のようになる.


\qquad \; \!\!$2 \leqq m \leqq [オ]$の$(m,\ h(m))$について,$y=[カ]$
$[オ] \leqq m \leqq [キ]$の$(m,\ h(m))$について,$y=[ク]$
$[キ] \leqq m \leqq [ケ]$の$(m,\ h(m))$について,$y=[コ]$


これらの$3$直線と$x$軸で囲まれた部分の面積は$[サ]$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
岐阜薬科大学 公立 岐阜薬科大学 2016年 第4問
複素数平面上で原点$\mathrm{O}$と$2$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$を頂点とする$\triangle \mathrm{OAB}$がある.直線$\mathrm{OB}$に関して点$\mathrm{A}$と対称な点を$\mathrm{C}$,直線$\mathrm{OA}$に関して点$\mathrm{B}$と対称な点を$\mathrm{D}$とするとき,以下の問いに答えよ.ただし,複素数$z$と共役な複素数を$\overline{z}$で表すものとする.

(1)点$\mathrm{C}(\gamma)$とするとき,$\gamma=\overline{\left( \displaystyle\frac{\alpha}{\beta} \right)} \;\beta$であることを示せ.
(2)辺$\mathrm{AB}$と直線$\mathrm{DC}$が平行なとき,$\triangle \mathrm{OAB}$はどのような三角形か.
愛知県立大学 公立 愛知県立大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$がある.それぞれの位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{p}$とし,$\overrightarrow{p}=s \overrightarrow{a}+t \overrightarrow{b}$および$2s+t=2$を満たすとする.ただし,$s>0$,$t>0$とする.また$\overrightarrow{a}$と$\overrightarrow{b}$がなす角度を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{C}$の位置ベクトル$\overrightarrow{c}$が$\overrightarrow{c}=2 \overrightarrow{b}$を満たすとき,点$\mathrm{P}$は直線$\mathrm{AC}$上にあることを示せ.
(2)点$\mathrm{P}$を中心とする円が直線$\mathrm{OA}$,$\mathrm{OB}$に接しているとする.$|\overrightarrow{a|}=3$,$|\overrightarrow{b|}=1$とするとき,$s$と$t$を求めよ.
(3)$(2)$のとき,直線$\mathrm{OA}$に関して,点$\mathrm{P}$と対称な点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\theta$で表せ.
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
スポンサーリンク

「対称」とは・・・

 まだこのタグの説明は執筆されていません。