タグ「定積分」の検索結果

6ページ目:全871問中51問~60問を表示)
岩手大学 国立 岩手大学 2016年 第5問
関数$F(x)$と連続関数$f(t)$の関係が
\[ F(x)=\int_{-x}^x f(t) \, dt \]
で与えられるとき,次の問いに答えよ.

(1)$f(t)=e^t-e^{-t}$のとき,$F(x)$を求めよ.
(2)$2$つの連続関数$g(t)$,$h(t)$において,$g(-t)=g(t)$,$h(-t)=-h(t)$が常に成り立つとする.$f(t)=g(t)+h(t)$とするとき,$F^{\prime}(x)$を求めよ.
(3)$f(t)=t^2-1+(e^t-e^{-t}) \cos t$のとき,$x>0$における$F(x)$の最小値を求めよ.
山形大学 国立 山形大学 2016年 第1問
次の問いに答えよ.

(1)関数$f(x)=x^3-2kx^2+(k+3)x+5$が極値をもたないように,定数$k$の値の範囲を定めよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} |\cos 3x \cos x| \, dx$を求めよ.
(3)複素数$z$が$|z-2i|=2$を満たすとき,$|z-2 \sqrt{3|}$の最大値と最小値を求めよ.また,そのときの$z$の値を求めよ.ただし,$i$は虚数単位である.
山形大学 国立 山形大学 2016年 第2問
すべての実数$x$に対して微分可能な関数$f(x)$が等式
\[ e^{-x}f(x)+\int_0^x e^{-t} f(t) \, dt=1+e^{-2x}(3 \sin x-\cos x) \]
を満たすとき,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$f(0)$を求めよ.
(2)導関数$f^\prime(x)$を求めよ.
(3)$e^{-x} \sin x$の導関数を求めよ.さらに,$f(x)$を求めよ.
富山大学 国立 富山大学 2016年 第2問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$の値を求めよ.

(2)$3$以上の整数$n$に対して,不等式
\[ \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^n}} \, dx<\frac{\pi}{6} \]
が成り立つことを示せ.
富山大学 国立 富山大学 2016年 第1問
関数$f(x),\ g(x)$に対して,$\displaystyle h(x)=\int_0^x f(x-t)g(t) \, dt$で定義される関数$h(x)$を$(f * g)(x)$と書くことにする.このとき,次の問いに答えよ.

(1)$(f * g)(x)=(g * f)(x)$が成り立つことを示せ.
(2)$g(x)=e^{-x}$とし,関数$f_1(x),\ f_2(x),\ \cdots$を
\[ f_1(x)=1-e^{-x},\quad f_n(x)=(f_{n-1} * g)(x) \quad (n=2,\ 3,\ \cdots) \]
によって定義する.

(i) 整数$n$が$2$以上のとき,${f_n}^\prime(x)$を$f_n(x),\ f_{n-1}(x)$を用いて表せ.
(ii) $h_n(x)=e^x {f_n}^\prime(x) (n=1,\ 2,\ \cdots)$とおくとき,$3$以上の整数$n$に対して,${h_n}^\prime(x)$を$h_{n-1}(x)$を用いて表せ.
(iii) $h_n(x)$を求めよ.
富山大学 国立 富山大学 2016年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$の値を求めよ.

(2)$3$以上の整数$n$に対して,不等式
\[ \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^n}} \, dx<\frac{\pi}{6} \]
が成り立つことを示せ.
同志社大学 私立 同志社大学 2016年 第4問
$n$を自然数,$k$を$0$以上の整数とする.また,$f(x)=|x \sin (nx)|$,$\displaystyle x_k=\frac{k \pi}{n}$,$\displaystyle \alpha_k=\frac{x_k+x_{k+1}}{2}$とする.次の問いに答えよ.

(1)$\displaystyle T_k=\int_{x_k}^{\alpha_k} f(x) \, dx$とする.$T_k$を$n,\ k$を用いて表し,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n T_k$を求めよ.
(2)$x_k \leqq x \leqq x_{k+1}$の範囲で,関数$f(x)$が最大値をとるときの$x$の値を$\beta_k$とする.$\displaystyle U_k=\int_{x_k}^{\beta_k} f(x) \, dx$とおくと,ある定数$b$を用いて$\displaystyle U_k=\frac{k \pi+b |\sin (n \beta_k)|}{n^2}$と表される.定数$b$の値を求めよ.また,極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n U_k$を求めよ.
(3)$x_k \leqq x \leqq \alpha_k$の範囲で,関数$g(x)=|x \cos (nx)|$が最大値をとるときの$x$の値を$\gamma_k$とする.この$\gamma_k$と$(2)$の$\beta_k$に対して,$\displaystyle V_k=\int_{\gamma_k}^{\beta_k} f(x) \, dx$とおく.極限$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n V_k$を求めよ.
日本医科大学 私立 日本医科大学 2016年 第2問
次の関数$f(x)$(ただし$x>0$)に関する以下の各問いに答えよ.
\[ f(x)=\int_1^x t(x-t+1)e^{-{(x-t+1)}^2} \, dt \]

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$g(x)$を$\displaystyle g(x)=\frac{1}{2}(e^{-1}-e^{-x^2})$とするとき,$f(x)$と$g(x)$の$x>0$における大小関係を調べよ.
(3)$(2)$の$g(x)$に対して,傾きが$f^\prime(x)-g^\prime(x)$の$x=\sqrt{2}$における値に等しく,点$(1,\ 0)$を通る直線を考えることにより,不等式
\[ 0.115<f(\sqrt{2})<0.165 \]
が成り立つことを示せ.ただし,$0.367<e^{-1}<0.368$,$0.135<e^{-2}<0.136$であることは用いてよい.
南山大学 私立 南山大学 2016年 第2問
$2$つの関数$\displaystyle f(x)=-\frac{1}{2}e^{-x}(\sin x+\cos x)$,$g(x)=e^{-x} \sin x$を考える.

(1)$f(x)$を微分せよ.
(2)定積分
\[ S_1=\int_0^{2\pi} |g(x)| \, dx \]
を求めよ.
(3)$n$を自然数とする.
\[ S_n=\int_{2(n-1) \pi}^{2n \pi} |g(x)| \, dx \]
とするとき,$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ.
(4)無限級数の和
\[ \sum_{n=1}^{\infty} S_n \]
を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第6問
$a$を$0$でない実数とする.等式
\[ f(x)=\frac{3}{a}x^2-\frac{1}{a}x+\left\{ \int_0^2 f(t) \, dt \right\}^2 \]
を満たす関数$f(x)$を考える.

(1)$a=-1$のとき,この等式を満たす$f(x)$は$2$つある.それらを求めよ.
(2)この等式を満たす$f(x)$がただ$1$つであるとき,$a$の値を求めよ.
(3)$b$を正の実数とする.定積分$\displaystyle \int_0^b \{f(x)-f(b)\} \, dx$の値が$a$によらないとき,$b$の値を求めよ.
(4)$a$と$b$を,それぞれ$(2)$と$(3)$で求めた値とするとき,定積分$\displaystyle \int_b^2 f(x) \, dx$を求めよ.
スポンサーリンク

「定積分」とは・・・

 まだこのタグの説明は執筆されていません。