タグ「完成」の検索結果

1ページ目:全23問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし設問$(2)$の空欄$[え]$には選択肢より適切な数を選んで記入しなさい.

(1)定員$2$名,$3$名,$4$名の$3$つの部屋がある.

(i) $2$人の教員と$7$人の学生の合計$9$人をこれらの$3$つの部屋に定員どおりに入れる割り当て方は$[あ]$とおりである.また,その割り当て方のなかで$2$人の教員が異なる部屋に入るようにする割り当て方は$[い]$とおりである.
(ii) $7$人の学生のみを,これらの$3$つの部屋に定員を超えないように入れる割り当て方は$[う]$とおりである.ただし誰も入らない部屋があってもよい.

(2)二元一次不定方程式$13x+11y=c$は$c=[え]$のとき$x>0$,$y>0$なる整数解をちょうど$1$組もつ.そのときの解は$(x,\ y)=([お],\ [か])$である.
\begin{waku}[$[え]$の選択肢]
$222 \quad 223 \quad 224$
\end{waku}
(3)すべての実数$m$に対して
\[ f(m)=\int_0^1 |e^x-m|e^x \, dx \]
により定義される関数$f(m)$は,$m=[き]$において最小値$[く]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$の頂点上に置かれた点$\mathrm{P}$に対する次の操作$\mathrm{T}$を考える.
\begin{waku}[操作$\mathrm{T}$]


\mon[$(\mathrm{T}1)$] 点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{B}$上に移す.
\mon[$(\mathrm{T}2)$] 点$\mathrm{P}$が頂点$\mathrm{B}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{C}$上に移す.
\mon[$(\mathrm{T}3)$] 点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれているときは,必ず頂点$\mathrm{A}$上に移す.

\end{waku}

以下$n,\ m$を自然数とし,点$\mathrm{P}$を頂点$\mathrm{A}$上に置いて,操作$\mathrm{T}$を繰り返し行う.操作$\mathrm{T}$を$n$回繰り返し終えたとき,点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれている確率を$a_n$,頂点$\mathrm{B}$上に置かれている確率を$b_n$,頂点$\mathrm{C}$上に置かれている確率を$c_n$とする.

(1)$n \geqq 2$のとき$a_n,\ b_n,\ c_n$を$a_{n-1},\ b_{n-1},\ c_{n-1}$で表すと
\[ \left\{ \begin{array}{l}
a_n=[あ]a_{n-1}+[い]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
b_n=[う]a_{n-1}+[え]b_{n-1} \phantom{\frac{1}{1}} \\
c_n=[お]b_{n-1}+[か]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
\end{array} \right. \]
である.
(2)$(1)$より$a_n,\ b_n$を求めると,$a_{2m-1}=[き]$,$b_{2m-1}=[く]$であり,$a_{2m}=[け]$,$b_{2m}=[こ]$である.
(3)操作$\mathrm{T}$を$n$回繰り返し終えたとき初めて点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれる確率を$d_n$とすると,$d_n=[さ]$である.
(4)操作$\mathrm{T}$を$n$回繰り返し終えたとき点$\mathrm{P}$が頂点$\mathrm{A}$または$\mathrm{B}$の上に置かれ,かつそれまでに$1$回だけ頂点$\mathrm{C}$上に置かれていた確率を$e_n$とすると,$e_n=[し]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また設問$(3)$に答えなさい.

時間$t$とともに座標平面上を動く点$\mathrm{P}(t)$は次の条件$(ⅰ)$をみたすとする.

(i) $\mathrm{P}(t)$は原点をとおらず,その偏角$\theta(t)$および原点からの距離$r(t)$は$t$について微分可能,かつ$r(0)=1$であり,さらに$\theta^\prime(t)=1$が成り立つ.



(1)動点$\mathrm{P}(t)$の座標を$(x(t),\ y(t))$とし,時刻$t$における$\mathrm{P}(t)$の速度ベクトル$\displaystyle \overrightarrow{v}(t)=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$とベクトル$\overrightarrow{b}(t)=(\cos \theta (t),\ \sin \theta (t))$のなす角を$\alpha (t)$とする.このとき$\cos \alpha (t)$を$r(t)$を用いて表すと$\cos \alpha (t)=[あ]$である.
(2)動点$\mathrm{P}(t)$がさらに次の条件$(ⅱ)$をみたすとする.

(ii) すべての$t$に対して$\displaystyle \alpha (t)=\frac{\pi}{4}$である.

このとき$r(t)=[い]$である.
(3)条件$(ⅰ),\ (ⅱ)$をみたす$2$つの動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$の間に次の条件$(ⅲ)$が成り立つとする.ただし動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$それぞれの偏角を$\theta_1(t)$,$\theta_2(t)$,原点からの距離を$r_1(t)$,$r_2(t)$とし,速度ベクトルを$\overrightarrow{v_1}(t)$,$\overrightarrow{v_2}(t)$とする.

(iii) すべての$t$に対してベクトル$\overrightarrow{v_1}(t)$とベクトル$\overrightarrow{v_2}(t)$は垂直である.

このとき時刻$s$から$u$の間に動点$\mathrm{P}_2(t)$がその軌道に沿って動く道のりを$l(s,\ u)$とすると
\[ l(s,\ u)=|\overrightarrow{\mathrm{P|_1(u) \mathrm{P}_2(u)}}-|\overrightarrow{\mathrm{P|_1(s) \mathrm{P}_2(s)}} \]
が成り立つことを示しなさい.ただし$s<u$とする.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)不等式
\[ \log_2 (5-2x)+2 \log_{\frac{1}{2}} (x+2) \leqq 0 \]
をみたす$x$の範囲は$[あ]$である.
(2)$2$つの関数
\[ f(x)=|\displaystyle x^2+3bx-\frac{b|{4}},\quad g(x)=x^2+3b |x|-\frac{b}{4} \]
の最小値が一致するような$b$の範囲は$[い]$である.
(3)$\displaystyle 0 \leqq \alpha <\frac{\pi}{2}$のとき,関数
\[ f(x)=\sin (x-\alpha) \cos x \quad \left( \alpha \leqq x \leqq \frac{\pi}{2} \right) \]
は$x=[う]$において最大値をとる.この最大値が$\displaystyle \frac{1}{4}$となるのは$\alpha=[え]$のときである.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の点の集合$S=\{-1,\ 0,\ 1\}$を考える.球が$2$個用意されており,$S$の各点上には,$2$個まで球を置くことができるとする.$S$内に置かれた球に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
{\bf 操作$\mathrm{T}$}

\mon[$(\mathrm{T}1)$] $S$内に球が$1$個だけ置かれている場合は, その球に対して次の操作$\mathrm{A}$を行う.
\begin{screen}
{\bf 操作$\mathrm{A}$}

\mon[$(\mathrm{A}1)$] 球が点$0$上に置かれている場合はその球を確率$\displaystyle\frac{1}{3}$で$S$内から取り除き,確率$\displaystyle\frac{1}{3}$ずつで点$-1$または点$1$の上に移す.
\mon[$(\mathrm{A}2)$] 球が点$-1$または点$1$の上に置かれている場合はその球を必ず点$0$の上に移す.

\end{screen}
\mon[$(\mathrm{T}2)$] $S$内に球が$2$個置かれている場合は,どちらか$1$個の球を等しい確率で選び,その選ばれた球に対して操作$\mathrm{A}$を行う.

\end{screen}
いま,球が$2$個とも点$0$上に置かれている状態から始め,操作$\mathrm{T}$を繰り返し行う.ただし,$S$内に球がなくなった場合は操作を行うのをやめる.以下,$n,\ m$を自然数とする.

(1)操作$\mathrm{T}$を$n$回繰り返し終えたとき,球が$2$個とも点$0$上に置かれている確率を$p_n$とし,点$-1$と点$0$の上に$1$個ずつ置かれているかまたは点$0$と点$1$の上に$1$個ずつ置かれている確率を$q_n$とする.

\mon[$(1$-$1)$] $n \geqq 2$に対し,$p_n=[あ]q_{n-1}$である.
\mon[$(1$-$2)$] $q_1=[い]$である.一般に$q_{2m}=0$であり,$q_{2m-1}$を$m$の式で表すと$q_{2m-1}=[う]$である.

(2)操作$\mathrm{T}$を$n$回繰り返し終えたとき,$S$内に球が$1$個だけあり,かつそれが点$0$上に置かれている確率を$r_n$,点$-1$または点$1$の上に置かれている確率を$s_n$とする.

\mon[$(2$-$1)$] $n \geqq 2$に対し,
\[ \begin{array}{l}
r_n=[え]s_{n-1}+[お]p_{n-1} \\
s_n=[か]r_{n-1}+[き]q_{n-1}
\end{array} \]
である.
\mon[$(2$-$2)$] 一般に$r_{2m}=0$であり,$r_{2m-1}$を$m$の式で表すと$r_{2m-1}=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また$(1)$,$(3)$に答えなさい.

以下,数列$\{a_n\}$が「長さ有限」とは,ある番号から先のすべての$n$に対して$a_n=0$となることをいう.ただし,$a_n$はすべて実数とする.また,数列$\{a_n\}$を一つの文字で表すときは$A=\{a_n\}$あるいは$A=(a_1,\ a_2,\ \cdots)$のように書く.数列$A=\{a_n\}$が長さ有限のとき,$a_n \neq 0$となるような自然数$n$の最大値を数列$A$の「長さ」と呼ぶ.ただし,すべての$n$に対して$a_n=0$である数列の長さは$0$とする.
数列$A=\{a_n\}$,$B=\{b_n\}$,および実数$c$に対して
\[ A+B=\{a_n+b_n\},\quad cA=\{ca_n\} \]
により新しい数列$A+B$および$cA$を定義する.また,$A$,$B$がともに長さ有限のときに限って$A$と$B$との「内積」$A \cdot B$および「距離」$\overline{AB}$をそれぞれ
\[ A \cdot B=\sum_{n=1}^\infty a_nb_n,\quad \overline{AB}=\sqrt{\sum_{n=1}^\infty (a_n-b_n)^2} \]
により定める.$\displaystyle \left( \sum_{n=1}^\infty \text{は実際には有限個の数の和である.} \right)$
さて,
\[ A(0)=(0,\ 0,\ 0,\ \cdots),\quad A(1)=(1,\ 0,\ 0,\ \cdots) \]
であるとし,さらに$s=2,\ 3,\ \cdots$に対して長さ$s$の数列
\[ A(s)=(a(s)_1,\ a(s)_2,\ \cdots,\ a(s)_s,\ 0,\ 0,\ \cdots) \]
が定まっていて$a(s)_n>0 (n=1,\ 2,\ \cdots,\ s)$かつ
\[ \overline{A(s)A(t)}=1 \quad (s \neq t \text{かつ}s,\ t=0,\ 1,\ 2,\ \cdots) \]
が成り立っているとする.

(1)$s \geqq 1$ならば$A(s) \cdot A(s)=1$であり,また,$t>s \geqq 1$ならば$\displaystyle A(s) \cdot A(t)=\frac{1}{2}$であることを示しなさい.ただし,$A(s)=\{a_n\}$,$A(t)=\{b_n\}$とおきなさい.
(2)$A(2),\ A(3)$を求めると
$A(2)=\left( [あ],\ [い],\ 0,\ 0,\ \cdots \right)$,
$A(3)=\left( [う],\ [え],\ [お],\ 0,\ 0,\ \cdots \right)$
である.
(3)$t>s \geqq 2$ならば数列$A(t)$と数列$A(s)$の初めの$s-1$項はすべて一致することを示しなさい.ただし,数列$A(s)$の初めの$s$項を$a_1,\ a_2,\ \cdots,\ a_s$,数列$A(t)$の初めの$t$項を$b_1,\ b_2,\ \cdots,\ b_t$とおき,また,$s$と$t$以外のすべての$i \geqq 1$について数列$A(i)$の初めの$i$項を$c(i)_1,\ c(i)_2,\ \cdots,\ c(i)_i$とおきなさい.
(4)$t=1,\ 2,\ \cdots$に対して長さ$t$の数列$B(t)$を
\[ B(t)=\frac{1}{t+1} \left\{ A(1)+A(2)+\cdots +A(t) \right\}=\frac{1}{t+1} \sum_{i=1}^t A(i) \]
により定めると,$s=1,\ 2,\ \cdots,\ t$に対して$A(s) \cdot B(t)=[か]$である.
(5)$(3)$で示されたことから,$2$つの数列$\{x_n\}$,$\{y_n\}$が定まって,すべての$s \geqq 2$に対して$A(s)$は
\[ A(s)=(x_1,\ x_2,\ \cdots,\ x_{s-1},\ y_s,\ 0,\ 0,\ \cdots) \]
と表される.$\displaystyle \frac{y_s}{x_s}$を$s$の式で表すと$\displaystyle \frac{y_s}{x_s}=[き]$である.また,$x_s$を$s$の式で表すと$x_s=[く]$となる.
鹿児島大学 国立 鹿児島大学 2014年 第7問
$2$つの確率変数$X,\ Y$の確率分布を同時に考えた表(同時確率分布表)が下のように与えられている.ただし,$X,\ Y$は互いに独立であり,$0<a<1$,$0<b<1$とする.このとき,次の各問いに答えよ.
(図は省略)

(1)表を完成させ,完成させた表を書け.
(2)確率変数$W=X-Y$の平均$E(W)$を求めよ.
(3)確率変数$\displaystyle Z=\frac{Y}{X}$の確率分布表を作成し,$Z$の平均$E(Z)$を求めよ.
(4)$\displaystyle E(Z)=\frac{9}{4},\ E(W)=-\frac{3}{2}$となる場合に,$Z$の分散$V(Z)$を求めよ.
スポンサーリンク

「完成」とは・・・

 まだこのタグの説明は執筆されていません。