タグ「存在」の検索結果

4ページ目:全303問中31問~40問を表示)
北里大学 私立 北里大学 2016年 第2問
$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CD}+\mathrm{DA}=12$である四角形$\mathrm{ABCD}$が円に内接している.$\mathrm{CD}=x$とおく.次の問いに答えよ.

(1)$\mathrm{AC}=3 \sqrt{6}$のとき,$x$の値を求めよ.
(2)$x$のとり得る値の範囲を求めよ.
(3)四角形$\mathrm{ABCD}$の面積の最大値を求めよ.
(4)四角形$\mathrm{ABCD}$の$4$辺すべてが接する円が存在するとき,$x$の値を求めよ.
名城大学 私立 名城大学 2016年 第2問
$2$つの$2$次方程式$x^2+ax-(b+1)=0$と$bx^2+2bx-(a+2)=0$がともに実数解をもたないような実数の組$(a,\ b)$の存在する領域を,$ab$平面上に図示せよ.
京都産業大学 私立 京都産業大学 2016年 第3問
$xy$平面上の$2$つの曲線

$C_1:y=e^x-2$
$C_2:y=\log x$

について以下の問いに答えよ.ただし,$\log$は自然対数であり,$e$は自然対数の底とする.

(1)$s$を実数,$t$を正の数とする.$C_1$上の点$(s,\ e^s-2)$における$C_1$の接線の方程式,および$C_2$上の点$(t,\ \log t)$における$C_2$の接線の方程式を求めよ.
(2)$C_1$と$C_2$の両方に接する直線は$2$本存在する.それぞれの直線の方程式を求めよ.
(3)$(2)$の$2$直線それぞれの$C_2$との接点の座標を求めよ.
(4)$(2)$の$2$直線の交点の$x$座標を求めよ.
(5)$C_2$と$(2)$の$2$直線で囲まれた部分の面積を求めよ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
玉川大学 私立 玉川大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^2 |x^2-3x+2| \, dx=[ア]$.

(2)$\displaystyle \left( x^2-\frac{1}{2x} \right)^5$の$x$の項の係数は$\displaystyle \frac{[イウ]}{[エ]}$で,$x^7$の項の係数は$\displaystyle \frac{[オカ]}{[キ]}$である.

(3)$\displaystyle \frac{x^2+2x+2}{(x-1)(x^2-x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2-x+1}$は$x$について恒等式である.このとき,$A$,$B$,$C$は,
\[ A=[ク],\quad B=[ケコ],\quad C=[サ] \]
である.
(4)方程式$x(x+1)(x+2)=60$の解は,$x=[シ],\ [スセ] \pm \sqrt{[ソタ]}i$である.
(5)$\displaystyle -1,\ \frac{3}{2},\ -1+i,\ -1-i$が$4$次方程式$x^4+ax^3+bx^2+cx+d=0$の解であるとき,
\[ a=\frac{[チ]}{[ツ]},\quad b=\frac{[テト]}{[ナ]},\quad c=[ニヌ],\quad d=[ネノ] \]
である.
(6)関数$y=4^x-2^{x+1}+3 (-1 \leqq x \leqq 2)$は,$x=[ハ]$のとき,最大値$[ヒフ]$をとり,$x=[ヘ]$のとき,最小値$[ホ]$をとる.
(7)$f^\prime(a)$が存在するとき,


$\displaystyle \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}=[マ]f^\prime(a),$

$\displaystyle \lim_{h \to 0} \frac{f(a+3h)-f(a+h)}{h}=[ミ]f^\prime(a)$


が成り立つ.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{A}$,$\mathrm{B}$をそれぞれ$\overrightarrow{\mathrm{OA}}=(1,\ 0)$,$\overrightarrow{\mathrm{OB}}=(1,\ 2)$で定め,点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$($s,\ t$は実数)で定める.

(1)$s=2$,$t=3$のとき,$\overrightarrow{\mathrm{OP}}=([サ],\ [シ])$である.
(2)$\overrightarrow{\mathrm{OP}}=(2,\ 10)$のとき,$s=[スセ]$,$t=[ソ]$である.
(3)実数$s,\ t$が$4s+5t \leqq 20$,$s \geqq 0$,$t \geqq 0$を満たしながら変化するとき,点$\mathrm{P}$の存在する範囲は原点$\mathrm{O}$,点$([タ],\ [チ])$,$([ツ],\ [テ])$を頂点とする三角形の内部および周である.ただし,$[タ]<[ツ]$とする.
近畿大学 私立 近畿大学 2016年 第1問
正$n$面体の各面に$1$から$n$の数字を$1$つずつ書き,$n$面のさいころ($n$面ダイス)を作る.ただし回転させて一致するものは同じ$n$面ダイスとみなす.

(1)$n$は$5$つの値をとる.それらの和は$[ア]$である.
(2)数字の書き方は$n=4$のとき$[イ]$通り,$n=6$のとき$[ウ]$通り,$n=8$のとき$[エ]$通り存在する.
(3)$n$面ダイスのそれぞれの目の出る確率は$\displaystyle \frac{1}{n}$とする.

(i) $4$面ダイスと$8$面ダイスを投げて,出た目の積が$4$の倍数となる確率は$[オ]$である.
(ii) $4$面ダイスと$6$面ダイスと$8$面ダイスを投げて,出た目の積が$100$以上となる確率は$[カ]$である.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第3問
$a,\ b$を実数とする.関数$f(x)=x^3-3a^2x+2b$について,以下の問いに答えよ.

(1)$f(x)$が単調に増加するとき,$a$についての条件を求めよ.
(2)$y=f(x)$のグラフが$x$軸と異なる$3$点で交わるための条件を$a$と$b$を用いて表せ.
(3)$a,\ b$が$(2)$で求めた条件をみたすとき,点$(a,\ b)$が存在する領域を座標平面上に図示せよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第7問
$a$を$1$以上の実数,$b$を実数,$i$を虚数単位とし,複素数$z$を$z=a+bi$とする.また,複素数$w$を$\displaystyle w=\frac{1}{z}$とする.以下の問いに答えよ.

(1)複素数$z$が存在する領域を複素数平面上に図示せよ.また,$iz$が存在する領域を複素数平面上に図示せよ.
(2)$x,\ y$を実数とし,$w=x+yi$とおくとき,$a$を$x$および$y$を用いて表せ.
(3)$w$が存在する領域を複素数平面上に図示せよ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。