タグ「存在」の検索結果

1ページ目:全303問中1問~10問を表示)
名古屋大学 国立 名古屋大学 2016年 第1問
曲線$y=x^2$上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(b,\ b^2)$をとる.ただし$b>-1$とする.このとき,次の条件を満たす$b$の範囲を求めよ.


\mon[条件:] $y=x^2$上の点$\mathrm{T}(t,\ t^2) (-1<t<b)$で,$\angle \mathrm{ATB}$が直角になるものが存在する.
名古屋大学 国立 名古屋大学 2016年 第1問
曲線$y=x^2$上に$2$点$\mathrm{A}(-2,\ 4)$,$\mathrm{B}(b,\ b^2)$をとる.ただし$b>-2$とする.このとき,次の条件を満たす$b$の範囲を求めよ.


\mon[条件:] $y=x^2$上の点$\mathrm{T}(t,\ t^2) (-2<t<b)$で,$\angle \mathrm{ATB}$が直角になるものが存在する.
東北大学 国立 東北大学 2016年 第1問
平面上で原点$\mathrm{O}$と$3$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ 2)$,$\mathrm{C}(-1,\ 1)$を考える.実数$s,\ t$に対し,点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}} \]
により定める.以下の問いに答えよ.

(1)$s,\ t$が条件
\[ -1 \leqq s \leqq 1,\quad -1 \leqq t \leqq 1,\quad -1 \leqq s+t \leqq 1 \]
を満たすとき,点$\mathrm{P}(x,\ y)$の存在する範囲$D$を図示せよ.
(2)点$\mathrm{P}$が$(1)$で求めた範囲$D$を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値を求め,そのときの$\mathrm{P}$の座標を求めよ.
神戸大学 国立 神戸大学 2016年 第4問
約数,公約数,最大公約数を次のように定める.
\begin{itemize}
$2$つの整数$a,\ b$に対して,$a=bk$をみたす整数$k$が存在するとき,$b$は$a$の約数であるという.
$2$つの整数に共通の約数をそれらの公約数という.
少なくとも一方が$0$でない$2$つの整数の公約数の中で最大のものをそれらの最大公約数という.
\end{itemize}
以下の問に答えよ.

(1)$a,\ b,\ c,\ p$は$0$でない整数で$a=pb+c$をみたしているとする.

(i) $a=18$,$b=30$,$c=-42$,$p=2$のとき,$a$と$b$の公約数の集合$S$,および$b$と$c$の公約数の集合$T$を求めよ.
(ii) $a$と$b$の最大公約数を$M$,$b$と$c$の最大公約数を$N$とする.$M$と$N$は等しいことを示せ.ただし,$a,\ b,\ c,\ p$は$0$でない任意の整数とする.

(2)自然数の列$\{a_n\}$を
\[ a_{n+2}=6a_{n+1}+a_n (n=1,\ 2,\ \cdots),\quad a_1=3,\quad a_2=4 \]
で定める.

(i) $a_{n+1}$と$a_n$の最大公約数を求めよ.
(ii) $a_{n+4}$を$a_{n+2}$と$a_n$を用いて表せ.
(iii) $a_{n+2}$と$a_n$の最大公約数を求めよ.
北海道大学 国立 北海道大学 2016年 第5問
空間の$2$点$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(0,\ 1,\ 3)$を通る直線を$\ell$とし,$2$点$\mathrm{C}(1,\ 0,\ 0)$,$\mathrm{D}(1,\ 0,\ 1)$を通る直線を$m$とする.$a$を定数として,$\ell$上にも$m$上にもない点$\mathrm{P}(s,\ t,\ a)$を考える.

(1)$\mathrm{P}$から$\ell$に下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$から$m$に下ろした垂線と$m$の交点を$\mathrm{R}$とする.$\mathrm{Q}$,$\mathrm{R}$の座標をそれぞれ$s,\ t,\ a$を用いて表せ.
(2)$\mathrm{P}$を中心とし,$\ell$と$m$がともに接するような球面が存在するための条件を$s,\ t,\ a$の関係式で表せ.
(3)$s,\ t$と定数$a$が$(2)$の条件をみたすとき,平面上の点$(s,\ t)$の軌跡が放物線であることを示し,その焦点と準線を$a$を用いて表せ.
名古屋大学 国立 名古屋大学 2016年 第4問
次の問に答えよ.ただし$2$次方程式の重解は$2$つと数える.

(1)次の条件$(*)$を満たす整数$a,\ b,\ c,\ d,\ e,\ f$の組をすべて求めよ.
\[ (*) \left\{ \begin{array}{l}
\text{$2$次方程式$x^2+ax+b=0$の$2$つの解が$c,\ d$である.} \\
\text{$2$次方程式$x^2+cx+d=0$の$2$つの解が$e,\ f$である.} \\
\text{$2$次方程式$x^2+ex+f=0$の$2$つの解が$a,\ b$である.}
\end{array} \right. \]
(2)$2$つの数列$\{a_n\},\ \{b_n\}$は,次の条件$(**)$を満たすとする.

\mon[$(**)$] すべての正の整数$n$について,$a_n,\ b_n$は整数であり,$2$次方程式$x^2+a_nx+b_n=0$の$2$つの解が$a_{n+1},\ b_{n+1}$である.

このとき,

(i) 正の整数$m$で,$|b_m|=|b_{m+1|}=|b_{m+2|}=\cdots$となるものが存在することを示せ.
(ii) 条件$(**)$を満たす数列$\{a_n\},\ \{b_n\}$の組をすべて求めよ.
東京大学 国立 東京大学 2016年 第5問
$k$を正の整数とし,$10$進法で表された小数点以下$k$桁の実数
\[ 0.a_1a_2 \cdots a_k=\frac{a_1}{10}+\frac{a_2}{{10}^2}+\cdots +\frac{a_k}{{10}^k} \]
を$1$つとる.ここで,$a_1,\ a_2,\ \cdots,\ a_k$は$0$から$9$までの整数で,$a_k \neq 0$とする.

(1)次の不等式をみたす正の整数$n$をすべて求めよ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{n}-{10}^k<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(2)$p$が$5 \cdot {10}^{k-1}$以上の整数ならば,次の不等式をみたす正の整数$m$が存在することを示せ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{m}-p<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(3)実数$x$に対し,$r \leqq x<r+1$をみたす整数$r$を$[x]$で表す.$\sqrt{s}-[\sqrt{s}]=0.a_1 a_2 \cdots a_k$をみたす正の整数$s$は存在しないことを示せ.
滋賀医科大学 国立 滋賀医科大学 2016年 第2問
分母が奇数,分子が整数の分数で表せる有理数を「控えめな有理数」と呼ぶことにする.例えば$\displaystyle -\frac{1}{3}$,$2$はそれぞれ$\displaystyle \frac{-1}{3},\ \frac{2}{1}$と表せるから,ともに控えめな有理数である.$1$個以上の有限個の控えめな有理数$a_1,\ \cdots,\ a_n$に対して,集合$S \langle a_1,\ \cdots,\ a_n \rangle$を,
\[ S \langle a_1,\ \cdots,\ a_n \rangle=\{x_1a_1+\cdots+x_na_n \;|\; x_1,\ \cdots,\ x_n \ \text{は控えめな有理数} \} \]
と定める.例えば$1$は$\displaystyle 1 \cdot \left( -\frac{1}{3} \right) +\frac{2}{3} \cdot 2$と表せるから,$\displaystyle S \langle -\frac{1}{3},\ 2 \rangle$の要素である.

(1)控えめな有理数$a_1,\ \cdots,\ a_n$が定める集合$S \langle a_1,\ \cdots,\ a_n \rangle$の要素は控えめな有理数であることを示せ.
(2)$0$でない控えめな有理数$a$が与えられたとき,$S \langle a \rangle=S \langle 2^t \rangle$となる$0$以上の整数$t$が存在することを示せ.
(3)控えめな有理数$a_1,\ \cdots,\ a_n$が与えられたとき,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b \rangle$となる控えめな有理数$b$が存在することを示せ.
(4)$2016$が属する集合$S \langle a_1,\ \cdots,\ a_n \rangle$はいくつあるか.ただし$a_1,\ \cdots,\ a_n$は控えめな有理数であるとし,$a_1,\ \cdots,\ a_n$と$b_1,\ \cdots,\ b_m$が異なっていても,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b_1,\ \cdots,\ b_m \rangle$であれば,$S \langle a_1,\ \cdots,\ a_n \rangle$と$S \langle b_1,\ \cdots,\ b_m \rangle$は一つの集合として数える.
東京農工大学 国立 東京農工大学 2016年 第3問
$a$を正の実数とし,$x$の関数$f(x)$を
\[ f(x)=e^{-ax} \tan^2 x \quad \left( -\frac{\pi}{3}<x<\frac{\pi}{3} \right) \]
で定める.ただし,$e$は自然対数の底とする.次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とする.$\displaystyle f^\prime \left( \frac{\pi}{4} \right)=0$が成り立つとき,$a$の値を求めよ.
(2)$f^\prime(x)=0$かつ$\displaystyle -\frac{\pi}{3}<x<\frac{\pi}{3}$を満たす$x$がちょうど$3$個存在するように,定数$a$の値の範囲を定めよ.
(3)$a$の値が$(2)$で定めた範囲にあるとする.このとき,方程式$f^\prime(x)=0$の解を$\displaystyle x_1,\ x_2,\ x_3 \left( -\frac{\pi}{3}<x_1<x_2<x_3<\frac{\pi}{3} \right)$とし,
\[ y_1=f(x_1),\quad y_2=f(x_2),\quad y_3=f(x_3) \]
とおく.

(i) $y_1,\ y_2,\ y_3$を大きさの順に並べよ.
(ii) $\tan x_3$を$a$の式で表せ.
千葉大学 国立 千葉大学 2016年 第1問
$1$個のさいころを$2$回投げ,最初に出た目を$a$,$2$回目に出た目を$b$とする.$2$次方程式$x^2-ax+b=0$について,次の問いに答えよ.

(1)実数解は存在すれば正であることを示せ.
(2)実数解の個数が$1$となる確率を求めよ.
(3)実数解の個数が$2$となる確率を求めよ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。