タグ「媒介変数」の検索結果

1ページ目:全61問中1問~10問を表示)
東京工業大学 国立 東京工業大学 2016年 第5問
次のように媒介変数表示された$xy$平面上の曲線を$C$とする:
\[ \left\{ \begin{array}{l}
x=3 \cos t-\cos 3t \phantom{\frac{8}{8}} \\
y=3 \sin t-\sin3 t \phantom{\frac{[ ]}{8}}
\end{array} \right. \]
ただし$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を計算し,$C$の概形を図示せよ.
(2)$C$と$x$軸と$y$軸で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
徳島大学 国立 徳島大学 2016年 第4問
媒介変数$\theta$を用いて$x=\sqrt{2} \cos \theta$,$y=\sqrt{3} \sin \theta (0 \leqq \theta \leqq 2\pi)$で表される曲線を$C$とする.

(1)$C$と$x$軸との交点の座標を求めよ.また,$C$と$y$軸との交点の座標を求めよ.
(2)$C$上の点$(x,\ y)$に対して,$x-y$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
(3)$C$上の点$(x,\ y)$に対して,$(x+y)(x-y)$のとる値の最大値および最小値と,そのときの$x,\ y$の値を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
楕円$\displaystyle \frac{x^2}{9}+y^2=1$を$C$とする.また,座標平面上の点$\mathrm{P}(v,\ w)$を通り,単位ベクトル$\overrightarrow{u}=(\alpha,\ \beta)$を方向ベクトルにもつ直線$\ell$の媒介変数$t$による表示を
\[ x=v+\alpha t,\quad y=w+\beta t \]
とする.直線$\ell$は$t=t_1,\ t_2$において楕円$C$とそれぞれ共有点$\mathrm{Q}$,$\mathrm{R}$をもつとする.ただし,$\alpha>0$,$t_1 \leqq t_2$とする.このとき,次の各問に答えよ.

(1)$t_1+t_2$と$t_1t_2$を$v,\ w,\ \alpha,\ \beta$を用いてそれぞれ表せ.
(2)$|\overrightarrow{\mathrm{PQ|}} \cdot |\overrightarrow{\mathrm{PR|}}$を$v,\ w,\ \alpha,\ \beta$を用いて表せ.
(3)$\alpha=\beta$のとき,$\displaystyle |\overrightarrow{\mathrm{QR|}}=\frac{6}{5}$となる点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第3問
$xy$平面上において,媒介変数$\theta (0 \leqq \theta \leqq \pi)$によって$x=a(2 \cos \theta+\cos 2\theta+1)$,$y=a(2 \sin \theta+\sin 2\theta)$と表される下図の曲線について考える.ただし,$a$は正の定数とする.以下の問いに答えよ.

(1)$\displaystyle \frac{dx}{d\theta},\ \frac{dy}{d\theta}$を求めよ.
(2)$x$が最大となる点を点$\mathrm{A}$,$y$が最大となる点を点$\mathrm{B}$,$x$が最小となる点を点$\mathrm{C}$と定める.このとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標および各点での媒介変数$\theta$の値を求めよ.
(3)曲線と$x$軸で囲まれる図形の面積を求めよ.
(図は省略)
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
電気通信大学 国立 電気通信大学 2016年 第2問
等比数列$\{a_n\}$と等差数列$\{b_n\}$を次の通りとする.
\[ a_n=\left( \frac{1}{\sqrt{2}} \right)^{n-3},\quad b_n=\frac{3 \pi (n-1)}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
これらを用いて,座標平面上の点$\mathrm{P}_n$を
\[ \mathrm{P}_n (a_n \cos b_n,\ a_n \sin b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}_4$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点であることを示せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さ$l_n$を$n$の式で表せ.
(3)極限値$\displaystyle L=\lim_{n \to \infty} \sum_{k=1}^n l_k$を求めよ.
(4)座標平面上の曲線$C$が媒介変数$t$と定数$\alpha,\ \beta$を用いて,
\[ x=2^{\alpha t+\beta} \cos t,\quad y=2^{\alpha t+\beta} \sin t \]
と表されるとする.曲線$C$が$t=0$で点$\mathrm{P}_1$を通り,$\displaystyle t=\frac{3 \pi}{4}$で点$\mathrm{P}_2$を通るとき,$\alpha,\ \beta$の値を求めよ.
(5)$(4)$で求めた$\alpha,\ \beta$の値に対し,曲線$C$がすべての点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を通ることを示せ.
兵庫県立大学 公立 兵庫県立大学 2016年 第5問
$C$を媒介変数$t (0 \leqq t \leqq \pi)$を用いて$x=1-\cos t$,$y=2 \sin t+\sin 2t$と表される座標平面上の曲線とする.

(1)曲線$C$上で$y$座標が最大となる点の座標を求め,曲線$C$の概形をかけ.
(2)曲線$C$と$x$軸とで囲まれた図形の面積を求めよ.
琉球大学 国立 琉球大学 2015年 第4問
$t$を媒介変数として,$\displaystyle x=t+\frac{1}{t}+\frac{5}{2}$,$\displaystyle y=2t-\frac{2}{t}$で表される曲線を考える.次の問いに答えよ.

(1)$t$を消去して,$x$と$y$の関係式を求めよ.
(2)$a$を定数とするとき,直線$y=ax+5$とこの曲線との共有点の個数を調べよ.
山形大学 国立 山形大学 2015年 第2問
$\displaystyle y=\cos \frac{\pi x}{2} (0 \leqq x \leqq 1)$で与えられる曲線を$C$とする.曲線$C$と$x$軸,$y$軸で囲まれた図形$S$について,以下の問いに答えよ.

(1)図形$S$の面積を求めよ.
(2)図形$S$を$x$軸のまわりに$1$回転させて得られる立体の体積を求めよ.
(3)部分積分法を用いて次の不定積分を求めよ.
\[ \int x^2 \sin x \, dx \]
(4)図形$S$を$y$軸のまわりに$1$回転させて得られる立体の体積を求めよ.その際,曲線$C$は変数$t$を媒介変数として
\[ x=\frac{2}{\pi}t,\quad y=\cos t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表せることを利用せよ.
スポンサーリンク

「媒介変数」とは・・・

 まだこのタグの説明は執筆されていません。