タグ「奇数」の検索結果

3ページ目:全170問中21問~30問を表示)
埼玉大学 国立 埼玉大学 2015年 第1問
$c$は正の整数とする.数列$a_1,\ a_2,\ a_3,\ \cdots$は$a_1=1$,$a_2=c$であり,さらに漸化式
\[ a_{n+2}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$n=1,\ 2,\ 3,\ \cdots$に対して,$a_n$は正の整数であり,かつ,$a_n$と$a_{n+1}$の最大公約数は$1$であることを示せ.
(2)${(-1)}^n(a_{n+1}^2-a_{n+2}a_n)$は$n$によらず一定の値であることを示せ.
(3)$c \geqq 2$とし,$\displaystyle b_n=\frac{a_{n+1}}{a_n}$とおくと
\[ \left\{ \begin{array}{ll}
b_{n+1}>b_n & (n \text{が偶数のとき}) \\
b_{n+1}<b_n & (n \text{が奇数のとき})
\end{array} \right. \]
が成り立つことを示せ.
鳴門教育大学 国立 鳴門教育大学 2015年 第5問
数直線上で,点$\mathrm{P}$は原点$\mathrm{O}$を出発点とし,さいころを投げて偶数の目が出たときは正の方向へ$1$だけ進み,奇数の目が出たときは負の方向へ$1$だけ進むものとします.$k$回さいころを投げた後の,点$\mathrm{P}$の位置の座標を$X(k)$とするとき,次の確率を求めなさい.

(1)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$である確率
(2)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$以下である確率
岐阜大学 国立 岐阜大学 2015年 第5問
$p$を$2$以上の整数とし,$a=p+\sqrt{p^2-1}$,$b=p-\sqrt{p^2-1}$とする.以下の問に答えよ.

(1)$a^2+b^2$と$a^3+b^3$がともに偶数であることを示せ.
(2)$n$を$2$以上の整数とする.$a^n+b^n$が偶数であることを示せ.
(3)正の整数$n$について,$[a^n]$が奇数であることを示せ.ただし,実数$x$に対して,$[x]$は$m \leqq x<m+1$を満たす整数$m$を表す.
信州大学 国立 信州大学 2015年 第2問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
信州大学 国立 信州大学 2015年 第1問
次の$3$つの条件を満たす自然数の組$(x,\ y,\ z)$を考える.

$(ⅰ)$ \ $x$は奇数である.
$(ⅱ)$ \ $x^2+y^2=z^2$
$(ⅲ)$ \ $x,\ y,\ z$の最大公約数は$1$である.

例えば$(x,\ y,\ z)=(3,\ 4,\ 5),\ (5,\ 12,\ 13)$などがその例である.

(1)$y$は偶数であることを示せ.
(2)$x=a^2-b^2,\ y=2ab$となる自然数$a,\ b$が存在することを示せ.
(3)条件を満たす$(x,\ y,\ z)$で,$(3,\ 4,\ 5)$と$(5,\ 12,\ 13)$以外のものを$2$組求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてもよい.
愛媛大学 国立 愛媛大学 2015年 第3問
$a$を実数とし,数列$\{a_n\}$および$\{b_n\}$を
\[ \begin{array}{ll}
a_1=a, & a_{n+1}=\left\{ \begin{array}{ll}
a_n+1 & (n \text{が奇数のとき}) \\
2a_n & (n \text{が偶数のとき})
\end{array} \right. \\
b_1=a, & b_{n+1}=\left\{ \begin{array}{ll}
2b_n & (n \text{が奇数のとき}) \\
b_n+1 & (n \text{が偶数のとき})
\end{array} \right. \phantom{\frac{\frac{[ ]^{[ ]}}{2}}{2}}
\end{array} \]
で定める.

(1)$a_2,\ a_3,\ a_4$,および$b_2,\ b_3,\ b_4$を求めよ.
(2)数列$\{c_n\}$を$c_n=a_{2n}$で定める.$\{c_n\}$の一般項を求めよ.
(3)数列$\{S_n\},\ \{T_n\}$,および$\{U_n\}$をそれぞれ
\[ S_n=\sum_{k=1}^{2n}a_k,\quad T_n=\sum_{k=1}^{2n}b_k,\quad U_n=S_n-T_n \]
で定める.

(i) $\{S_n\}$の一般項を求めよ.
(ii) $a=1$のとき,$\{U_n\}$の一般項を求めよ.
愛媛大学 国立 愛媛大学 2015年 第2問
$a$を実数とし,数列$\{a_n\}$および$\{b_n\}$を
\[ \begin{array}{ll}
a_1=a, & a_{n+1}=\left\{ \begin{array}{ll}
a_n+1 & (n \text{が奇数のとき}) \\
2a_n & (n \text{が偶数のとき})
\end{array} \right. \\
b_1=a, & b_{n+1}=\left\{ \begin{array}{ll}
2b_n & (n \text{が奇数のとき}) \\
b_n+1 & (n \text{が偶数のとき})
\end{array} \right. \phantom{\frac{\frac{[ ]^{[ ]}}{2}}{2}}
\end{array} \]
で定める.

(1)$a_2,\ a_3,\ a_4$,および$b_2,\ b_3,\ b_4$を求めよ.
(2)数列$\{c_n\}$を$c_n=a_{2n}$で定める.$\{c_n\}$の一般項を求めよ.
(3)数列$\{S_n\},\ \{T_n\}$,および$\{U_n\}$をそれぞれ
\[ S_n=\sum_{k=1}^{2n}a_k,\quad T_n=\sum_{k=1}^{2n}b_k,\quad U_n=S_n-T_n \]
で定める.

(i) $\{S_n\}$の一般項を求めよ.
(ii) $a=1$のとき,$\{U_n\}$の一般項を求めよ.
スポンサーリンク

「奇数」とは・・・

 まだこのタグの説明は執筆されていません。