タグ「多項式」の検索結果

6ページ目:全84問中51問~60問を表示)
山梨大学 国立 山梨大学 2012年 第2問
次の問いに答えよ.

(1)多項式$f(x)$を$x-1$で割ると$3$余り,$x-2$で割ると$2$余るとき,$f(x)$を$(x-1)(x-2)$で割ったときの余りを求めよ.
(2)不等式$0<\log (x^2-4x+3)-\log (x^2-6x+8)<\log 2$を満たす$x$の範囲を求めよ.
(3)$f(x)$が等式$\displaystyle f(x)=x^2+\int_0^x f^\prime(t) e^{t-x} \, dt$を満たしているとき,$f(x)$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
実数係数の$x$の多項式で表された関数$f(x)$は,導関数$f^{\prime}(x)$がすべての実数$x$に対して
$f^\prime (x)>0$をみたし,かつ,$f^\prime (x)$は極大値をもつとする.実数$s$に対して,点$(s,\ f(s))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標を$s$の関数として$g(s)$と表す.

(1)導関数$g^\prime(s)$を求めよ.
(2)関数$g(s)$は極大値と極小値をもつことを示せ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)多項式$P(x)$を$x^3+1$で割ったときの余りが$2x^2+13x$であった.このとき,$P(x)$を$x+1$で割ったときの余りは$[カ]$である.また,$P(x)$を$x^2-x+1$で割ったときの余りは$[キ]$である.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=n^3+2012 \]
で与えられるとする.この数列$\{a_n\}$の初項$a_1$は$a_1=[ク]$である.また,$2$以上の自然数$n$に対して,$a_n$を$n$を用いて表すと$a_n=[ケ]$となる.
(3)$a>1$とし,三角形$\mathrm{ABC}$で$\mathrm{AB}=2$,$\mathrm{BC}=a$,$\angle \mathrm{A}=30^\circ$であるようなものについて考える.このとき$k=[コ]$として,$1<a<k$の場合はこのような三角形は$2$つ存在するが,$a \geqq k$の場合はこのような三角形は$1$つしか存在しない.また$a \geqq k$の場合,$\mathrm{AC}$の長さを$a$を用いて表すと$\mathrm{AC}=[サ]$となる.
(4)$3$個のさいころを同時に投げるとき,出る目の数の積が$3$の倍数になる確率は$[シ]$であり,出る目の数の積が$15$の倍数になる確率は$[ス]$である.
(5)実数$x,\ y$が$2$つの不等式
\[ x^2+y^2 \leqq 25,\quad x-2y \geqq 5 \]
を同時に満たすとき,$y-2x$の最大値は$[セ]$であり,最小値は$[ソ]$である.
甲南大学 私立 甲南大学 2012年 第3問
$a,\ b,\ c$を実数とし,多項式$P(x)=x^3+ax^2+bx+c$は$x^2-1$で割っても$x^2-4x+3$で割っても余りは$2x+1$であるとする.また,多項式$Q(x)$は$x-3$で割ると$1$余り,その商を$x^2-3x+2$で割った余りも$1$であるとする.このとき,以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)$Q(x)$を$x^2-3x+2$で割ったときの余りを求めよ.
(3)$P(x)Q(x)$を$(x-1)(x-2)(x-3)$で割ったときの余りを求めよ.
甲南大学 私立 甲南大学 2012年 第3問
$x$の多項式$f(x)=(x-2)(x-1)(x+1)(x+2)$について,以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$を$f^\prime(x)$で割ったときの商と余りを求めよ.
(3)放物線$y=ax^2+bx+c$が曲線$y=f(x)$上の極値に対応する点をすべて通るように,実数$a,\ b,\ c$の値を定めよ.
上智大学 私立 上智大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$に対し,
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}},\quad s \geqq 0,\quad t \geqq 0 \]
とする.また,$\triangle \mathrm{OAB}$の面積を$S$とする.

(i) $1 \leqq s+t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[ア]$倍である.
(ii) $1 \leqq s+2t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[イ]$倍である.

(2)$(\sqrt{2})^n$は$n$が奇数のとき無理数である.より一般に,$2$以上の整数$k$に対し,$(\sqrt[k]{2})^n$は$n$が$k$の倍数でないとき無理数である.したがって,$2$以上の整数$k$に対し,
\[ \left( \sqrt{2}x+\sqrt[k]{2} \right)^{100} \]
を展開して得られる$x$の多項式において,

(i) $x^{100}$の係数は$2$の$[ウ]$乗,
(ii) $n=0,\ 1,\ \cdots,\ 100$に対し,$x^n$の係数が整数となるような$n$の個数は

$k=2$のとき$[エ]$個
$k=3$のとき$[オ]$個
$k=5$のとき$[カ]$個
$k=7$のとき$[キ]$個
$k=51$のとき$[ク]$個

である.
津田塾大学 私立 津田塾大学 2012年 第1問
次の各問に答えよ.

(1)多項式$f(x)$と$g(x)$の間に

$\displaystyle f(x)=2x+\int_0^1 g(t) \, dt$
$\displaystyle g(x)=\int_0^x f(t) \, dt+\int_0^1 f(t) \, dt$

という関係が成り立つとき,$f(x)$と$g(x)$を求めよ.
(2)関数$y=\log (x+\sqrt{x^2+1})$を微分せよ.
(3)$1$から$6$までの番号が$1$つずつ書かれた$6$枚のカードを横一列に並べる.$1$が書かれたカードと$2$が書かれたカードの間に他のカードが$1$枚ある並べ方は何通りあるか.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)放物線$\displaystyle y=x^2-x+\frac{7}{4}$の頂点の座標は$[ア]$である.
(2)多項式$P(x)$を$x-2$で割ると余りは$3$であり,$x+3$で割ると余りは$-7$である.また,$P(x)$を$(x-2)(x+3)$で割ると商は$x+1$であるが,割り切れない.この$P(x)$を$x+1$で割ると余りは$[イ]$である.
(3)赤い玉$2$個,黄色い玉$3$個,青い玉$4$個が入っている袋から,よくかき混ぜて玉を同時に$3$個取り出すとき,$3$個の玉の色が$2$種類である確率は$[ウ]$である.
(4)$2$つの曲線$y=a-x^2$,$y=x^2+2ax+b$が$x=3$で共通の接線をもつような$a,\ b$の値は$a=[エ]$,$b=[オ]$である.
大阪薬科大学 私立 大阪薬科大学 2012年 第2問
次の問いに答えなさい.多項式$P(x)={(1+x)}^{24}$を考える.

(1)$P(x)$の$x^2$の係数は$[$\mathrm{E]$}$である.
(2)$\comb{24}{0}-\comb{24}{1}+\comb{24}{2}-\comb{24}{3}+\cdots +\comb{24}{22}-\comb{24}{23}+\comb{24}{24}=[$\mathrm{F]$}$である.
(3)$\displaystyle Q(x)=\frac{1}{2} \left( P(x)+P(-x) \right)$とする.このとき,$Q(x)$は$P(x)$の
$\big\{$ (ア)奇数次数の項からなる. (イ)偶数次数の項からなる. (ウ)奇数次数と偶数次数の項からなる. $\bigr\}$
(ア),(イ),(ウ)の中から最も適切なものを選び,その記号を$[$\mathrm{G]$}$に記しなさい.
(4)方程式$x^3=1$の$3$つの解を$1,\ \alpha,\ \beta$とする.

(i) ${(1-\alpha)}^6=[$\mathrm{H]$}$である.
(ii) $\alpha^2-\beta=[$\mathrm{I]$}$である.
(iii) $\displaystyle \sum_{k=0}^{12} \comb{24}{2k} \beta^k$の値を$[い]$で求めなさい.
なお,必要ならば$3^{12}=531441$を使ってよい.
中央大学 私立 中央大学 2012年 第4問
関数$f(x)$の第$n$次導関数を$\displaystyle \frac{d^n}{dx^n}f(x)$で表す.いま,自然数$n$に対して関数$H_n(x)$を次で定義する.
\[ H_n(x)=(-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \]
以下の問いに答えよ.

(1)$H_1(x),\ H_2(x),\ H_3(x)$を求めよ.
(2)導関数$\displaystyle \frac{d}{dx} H_n(x)$を$H_n(x)$と$H_{n+1}(x)$を用いて表せ.さらに,$n$に関する数学的帰納法により$H_n(x)$が$n$次多項式(整式)であることを証明せよ.
(3)$n \geqq 3$のとき,定積分
\[ S_n(a)=\int_0^a xH_n(x) e^{-x^2} \, dx \]
を$H_{n-1}(a)$,$H_{n-2}(a)$,$H_{n-2}(0)$を用いて表せ.ただし,$a$は実数とする.
(4)$n=6$のとき,極限値$\displaystyle \lim_{a \to \infty}S_6(a)$を求めよ.
必要ならば,自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^k e^{-x^2}=0$が成り立つことを用いてよい.
スポンサーリンク

「多項式」とは・・・

 まだこのタグの説明は執筆されていません。