タグ「変量」の検索結果

1ページ目:全11問中1問~10問を表示)
広島大学 国立 広島大学 2016年 第5問
$n$を$2$以上の自然数とする.次の問いに答えよ.

(1)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,
\[ f(a)=\frac{1}{n} \sum_{k=1}^n (x_k-a)^2 \]
とする.$f(a)$を最小にする$a$は$x_1,\ x_2,\ \cdots,\ x_n$の平均値で,そのときの最小値は$x_1,\ x_2,\ \cdots,\ x_n$の分散であることを示せ.
(2)$c$を定数として,変量$y,\ z$の$k$番目のデータの値が

$y_k=k\phantom{c} \quad (k=1,\ 2,\ \cdots,\ n)$
$z_k=ck \quad (k=1,\ 2,\ \cdots,\ n)$

であるとする.このとき$y_1,\ y_2,\ \cdots,\ y_n$の分散が$z_1,\ z_2,\ \cdots,\ z_n$の分散より大きくなるための$c$の必要十分条件を求めよ.
(3)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,その平均値を$\overline{x}$とする.新たにデータを得たとし,その値を$x_{n+1}$とする.$x_1,\ x_2,\ \cdots,\ x_n,\ x_{n+1}$の平均値を$x_{n+1},\ \overline{x}$および$n$を用いて表せ.
(4)次の$40$個のデータの平均値,分散,中央値を計算すると,それぞれ,ちょうど$40,\ 670,\ 35$であった.

\begin{tabular}{|rrrrrrrrrr|}
\hline
$120$ & $10$ & $60$ & $70$ & $30$ & $20$ & $20$ & $30$ & $20$ & $60$ \\
$40$ & $50$ & $40$ & $10$ & $30$ & $40$ & $40$ & $30$ & $20$ & $70$ \\
$100$ & $20$ & $20$ & $40$ & $40$ & $60$ & $70$ & $20$ & $50$ & $10$ \\
$30$ & $10$ & $50$ & $80$ & $10$ & $30$ & $70$ & $10$ & $60$ & $10$ \\ \hline
\end{tabular}


新たにデータを得たとし,その値が$40$であった.このとき,$41$個のすべてのデータの平均値,分散,中央値を求めよ.ただし,得られた値が整数でない場合は,小数第$1$位を四捨五入せよ.
信州大学 国立 信州大学 2016年 第1問
$2$つの変量$x,\ y$のデータが,$n$個の$x,\ y$の値の組として
\[ (x_1,\ y_1),\ (x_2,\ y_2),\ \cdots,\ (x_n,\ y_n) \]
のように与えられているとする.このとき,以下の問いに答えよ.

(1)$x,\ y$の平均値をそれぞれ$\overline{x},\ \overline{y}$とするとき,変量$x$と$y$の共分散$s_{xy}$は
\[ s_{xy}=\frac{1}{n} \left( \sum_{k=1}^n x_ky_k \right)-\overline{x} \; \overline{y} \]
であることを示せ.
(2)これらのデータの間には,$y_k=ax_k+b (k=1,\ 2,\ \cdots,\ n)$という関係があるとする.ただし,$a,\ b$は実数で,$a \neq 0$である.変量$x$の標準偏差$s_x$は$0$でないとする.このとき,$x$と$y$の相関係数を求めよ.
琉球大学 国立 琉球大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は,$\displaystyle P \left( \frac{5}{3} \right)=\frac{8}{3}$と$\displaystyle P \left( -\frac{7}{2} \right)=-\frac{5}{2}$を満たす.$P(x)$を$6x^2+11x-35$で割った余りを求めよ.
(2)座標空間内の$3$点$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(0,\ 3,\ 0)$,$\mathrm{C}(1,\ s,\ t)$を頂点とする三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,原点を$\mathrm{O}$とする.$\mathrm{OG} \perp \mathrm{AG}$,$\mathrm{OG} \perp \mathrm{AB}$となるときの$s$と$t$の値を求めよ.
(3)変量$x$の値が$x_1,\ x_2,\ x_3$のとき,その平均値を$\overline{x}$とする.分散$s^2$を
\[ \frac{1}{3}\{(x_1-\overline{x})^2+(x_2-\overline{x})^2+(x_3-\overline{x})^2 \} \]
で定義するとき,$s^2=\overline{x^2}-(\overline{x})^2$となることを示せ.ただし$\overline{x^2}$は${x_1}^2,\ {x_2}^2,\ {x_3}^2$の平均値を表す.
星薬科大学 私立 星薬科大学 2016年 第1問
$2$つの変量$x,\ y$の$16$個のデータ$(x_1,\ y_1)$,$(x_2,\ y_2)$,$\cdots$,$(x_{16},\ y_{16})$が

$x_1+x_2+\cdots +x_{16}=72,$
$y_1+y_2+\cdots +y_{16}=120,$
${x_1}^2+{x_2}^2+\cdots +{x_{16}}^2=349,$
${y_1}^2+{y_2}^2+\cdots +{y_{16}}^2=925,$
$x_1y_1+x_2y_2+\cdots +x_{16}y_{16}=545$

を満たしているとき,次の問に小数で答えよ.

(1)変量$x,\ y$のデータの平均をそれぞれ$\overline{x},\ \overline{y}$とすると,
\[ \overline{x}=[$1$]. [$2$],\quad \overline{y}=[$3$]. [$4$] \]
である.
(2)変量$x,\ y$のデータの標準偏差をそれぞれ$s_x,\ s_y$とすると,
\[ s_x=[$5$]. [$6$][$7$],\quad s_y=[$8$]. [$9$][$10$] \]
である.また,変量$x,\ y$のデータの共分散を$s_{xy}$とすると,
\[ s_{xy}=[$11$]. \kakkofour{$12$}{$13$}{$14$}{$15$} \]
である.
(3)変量$x,\ y$のデータの相関係数を$r$とすると,$r=[$16$]. [$17$]$である.
東邦大学 私立 東邦大学 2016年 第15問
$2$つの変量をもつ$100$個のデータ$(x_1,\ y_1)$,$(x_2,\ y_2)$,$\cdots$,$(x_{100},\ y_{100})$が,
\[ \sum_{i=1}^{100} {x_i}^2=500,\quad \sum_{i=1}^{100} {y_i}^2=900,\quad \sum_{i=1}^{100} x_iy_i=500 \]
を満たす場合を考える.$\displaystyle X=\frac{1}{100} \sum_{i=1}^{100} x_i$および$\displaystyle Y=\frac{1}{100} \sum_{i=1}^{100} y_i$とするとき,点$(X,\ Y)$の存在範囲は不等式$\displaystyle \frac{(Y-X)^2}{[シ]}+\frac{X^2}{[ス]} \leqq 1$の表す領域である.また,$|X+Y|$のとり得る値の範囲は$0 \leqq |X+Y| \leqq [セ] \sqrt{[ソ]}$である.
成城大学 私立 成城大学 2016年 第3問
$2$つの変量$x,\ y$についてのデータが,$\mathrm{A}$から$\mathrm{J}$までの$10$個の$x,\ y$の組として与えられているとする.


\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|}
\hline
& $\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ & $\mathrm{D}$ & $\mathrm{E}$ & $\mathrm{F}$ & $\mathrm{G}$ & $\mathrm{H}$ & $\mathrm{I}$ & $\mathrm{J}$ \\ \hline
$x$ & $1$ & $2$ & $2$ & $1$ & $1$ & $3$ & $3$ & $1$ & $3$ & $3$ \\ \hline
$y$ & $4$ & $1$ & $1$ & $1$ & $4$ & $4$ & $4$ & $1$ & $1$ & $1$ \\ \hline
\end{tabular}



(1)$2$つの変量$x,\ y$のデータの最頻値をそれぞれ求めよ.
(2)$2$つの変量$x,\ y$のデータの平均値をそれぞれ求めよ.
(3)$2$つの変量$x,\ y$のデータの第$1$四分位数,第$2$四分位数,第$3$四分位数をそれぞれ求めよ.
(4)$2$つの変量$x,\ y$のデータの分散をそれぞれ求めよ.
(5)$2$つの変量$x,\ y$の相関係数を$r$で表すとき,$r^2$の値を求めよ.
西南学院大学 私立 西南学院大学 2016年 第5問
次の問いに答えよ.

\mon[$\tocichi$] $X_i,\ Y_i (i=1,\ 2,\ 3)$は実数とする.${X_1}^2+{X_2}^2+{X_3}^2 \neq 0$,${Y_1}^2+{Y_2}^2+{Y_3}^2 \neq 0$のとき,
\[ (X_1Y_1+X_2Y_2+X_3Y_3)^2 \leqq ({X_1}^2+{X_2}^2+{X_3}^2)({Y_1}^2+{Y_2}^2+{Y_3}^2) \quad \cdots\cdots ① \]
を以下の指示に従って,$2$通りの方法で証明せよ.

\mon[$(1)$] すべての実数$t$に対して,
\[ (tX_1-Y_1)^2+(tX_2-Y_2)^2+(tX_3-Y_3)^2 \geqq 0 \]
が成り立つことを利用して$①$を証明せよ.また等号が成り立つときの条件を示せ.
\mon[$(2)$] 原点を$\mathrm{O}$とする$2$つのベクトル,
\[ \overrightarrow{\mathrm{OA}}=(X_1,\ X_2,\ X_3),\quad \overrightarrow{\mathrm{OB}}=(Y_1,\ Y_2,\ Y_3) \]
を考える.$①$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$によって表せ.その上で,$①$を証明せよ.また等号が成り立つときの$2$つのベクトルの位置関係を示せ.

\mon[$\tocni$] 対応する$2$つの変量$x,\ y$の値の組$(x_i,\ y_i) (i=1,\ 2,\ 3)$を考える.変量$x$の平均を$\overline{x}$とし,$x$の偏差を$X$とする.すなわち,$X_i=x_i-\overline{x} (i=1,\ 2,\ 3)$であり,変量$y$についても同様とする.また$x,\ y$の相関係数が定義できる場合を考え,これを$r$とする.このとき,上記$①$を用いて,
\[ -1 \leqq r \leqq 1 \]
となることを示せ.
広島工業大学 私立 広島工業大学 2016年 第8問
$a$を定数とする.$2$つの変量$(x,\ y)$が右の$4$つの観測値をとった.このとき,次の問いに答えよ.
\begin{mawarikomi}{40mm}{
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & $0$ & $1$ & $a$ & $a+1$ \\ \hline
$y$ & $0$ & $0$ & $1$ & $1$ \\ \hline
\end{tabular}
}

(1)$x,\ y$の平均値$\overline{x},\ \overline{y}$をそれぞれ求めよ.
(2)$x,\ y$の分散${s_x}^2,\ {s_y}^2$をそれぞれ求めよ.
(3)$x$と$ y$の共分散$s_{xy}$を求めよ.
(4)$x$と$y$の相関係数$r$を$a$を用いて表せ.

\end{mawarikomi}
岐阜薬科大学 公立 岐阜薬科大学 2016年 第2問
$2$つの変量$x,\ y$が下表で与えられるとき,以下の問いに答えよ.ただし,$n$は自然数とする.

\begin{tabular}{|c|ccccc|}
\hline
$\mathrm{No.}$ & $1$ & $2$ & $3$ & $\cdots$ & $n$ \\ \hline
$x$ & $1$ & $3$ & $5$ & $\cdots$ & $2n-1$ \\ \hline
$y$ & $2$ & $4$ & $6$ & $\cdots$ & $2n$ \\ \hline
\end{tabular}



(1)変量$x$の平均値$m_x$と分散$s_x^2$を求めよ.
(2)変量$x$と変量$y$の相関係数$r$を求めよ.
(3)$n$個の変量$x$に,平均値$2n$,分散$4n^2$からなる$n$個のデータを加えた.この$2n$個からなるデータの平均値$m_x^{\prime}$と分散$s_x^{\prime 2}$をそれぞれ求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
スポンサーリンク

「変量」とは・・・

 まだこのタグの説明は執筆されていません。