タグ「向き」の検索結果

1ページ目:全74問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第3問
座標平面上の$2$つの放物線

$A:y=x^2$
$B:y=-x^2+px+q$

が点$(-1,\ 1)$で接している.ここで,$p$と$q$は実数である.さらに,$t$を正の実数とし,放物線$B$を$x$軸の正の向きに$2t$,$y$軸の正の向きに$t$だけ平行移動して得られる放物線を$C$とする.

(1)$p$と$q$の値を求めよ.
(2)放物線$A$と$C$が囲む領域の面積を$S(t)$とする.ただし,$A$と$C$が領域を囲まないときは$S(t)=0$と定める.$S(t)$を求めよ.
(3)$t>0$における$S(t)$の最大値を求めよ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
$6$枚の硬貨に$1$から$6$まで番号を$1$つずつ付け,はじめにすべて表向きにして並べておき,以下の操作を繰り返す.
\begin{waku}[操作]
さいころを$2$個投げて出た目の小さい方から大きい方までの番号の硬貨を裏返す.ただし,$2$個のさいころの目が同じ場合はその番号の硬貨のみを裏返す.
\end{waku}
たとえば,$1$回目にさいころを$2$個投げて$2$と$4$の目が出たとすると,番号$2,\ 3,\ 4$の硬貨を裏返すので硬貨の向きは番号$1$の硬貨から順に表,裏,裏,裏,表,表となる.続いて$2$回目にさいころを$2$個投げて$2$個とも$3$の目が出たとすると,番号$3$の硬貨のみを裏返すので硬貨の向きは番号$1$の硬貨から順に表,裏,表,裏,表,表となる.

(1)$1$回目の操作を終えたとき番号$3$の硬貨の向きが表である確率は$[コ]$であり,$2$回目の操作を終えたとき番号$3$の硬貨の向きが表である確率は$[サ]$である.また,$2$回目の操作を終えたとき番号$3$と番号$4$の硬貨のうち少なくとも一方の向きが表である確率は$[シ]$である.
(2)$n$回目の操作を終えたとき番号$3$と番号$4$の$2$つの硬貨の向きがともに表である確率を$p_n$,ともに裏である確率を$q_n$とする.このとき,関係式

$p_{n+1}-q_{n+1}=[ス](p_n-q_n)+[セ]$
$p_{n+1}+q_{n+1}=[ソ](p_n+q_n)+[タ]$

が成り立ち,$p_n$を$n$を用いて表すと$p_n=[チ]$となる.ただし,$[ス]$~$[タ]$には数を記入すること.
同志社大学 私立 同志社大学 2016年 第2問
平面上の$\triangle \mathrm{OAB}$において,$\angle \mathrm{OAB}$の二等分線と線分$\mathrm{OB}$との交点を$\mathrm{P}$,$\angle \mathrm{OBA}$の二等分線と線分$\mathrm{OA}$との交点を$\mathrm{Q}$とおく.直線$\mathrm{AP}$と直線$\mathrm{BQ}$との交点を$\mathrm{R}$とおく.$\mathrm{OA}=x$,$\mathrm{OB}=y$,$\mathrm{AB}=1$とし,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と平行で向きが同じである単位ベクトルをそれぞれ$\overrightarrow{u}$,$\overrightarrow{v}$とおく.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ y,\ \overrightarrow{v}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を$x,\ y,\ \overrightarrow{u},\ \overrightarrow{v}$を用いて表せ.
(3)直線$\mathrm{OR}$と直線$\mathrm{AB}$が垂直であるとき,直線$\mathrm{AB}$と直線$\mathrm{PQ}$が平行となることを示せ.
(4)$2 \overrightarrow{u} \cdot \overrightarrow{v}=-1$であり,$x,\ y$が変化するとき,$\overrightarrow{\mathrm{OR}}$の大きさが最大となるときの$x,\ y$の値と$\overrightarrow{\mathrm{OR}}$の大きさをそれぞれ求めよ.
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
会津大学 公立 会津大学 2016年 第2問
袋の中に,赤玉,青玉,白玉,黒玉が$1$つずつ,全部で$4$つ入っている.この袋から玉を$1$つ取り出して,また袋に戻す試行を繰り返す.座標平面上を動く点$\mathrm{P}$がはじめ原点$\mathrm{O}$にあり,試行のたびに,次の規則に従って動くものとする.
\begin{itemize}
赤玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$2$だけ進む.
青玉が出たとき,$\mathrm{P}$は$x$軸の正の向きに$1$だけ進む.
白玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$2$だけ進む.
黒玉が出たとき,$\mathrm{P}$は$y$軸の正の向きに$1$だけ進む.
\end{itemize}
このとき,以下の問いに答えよ.

(1)試行を$3$回繰り返した結果,$\mathrm{P}$が点$(2,\ 1)$にある確率を求めよ.
(2)試行を$3$回繰り返した結果,$\mathrm{P}$が$y$軸上にある確率を求めよ.
(3)試行を$5$回繰り返した結果,$\mathrm{OP}=5$となる確率を求めよ.
(4)試行を$5$回繰り返した結果,$\mathrm{P}$が不等式$6 \leqq x+y \leqq 8$の表す領域にある確率を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
スポンサーリンク

「向き」とは・・・

 まだこのタグの説明は執筆されていません。