タグ「半径」の検索結果

25ページ目:全712問中241問~250問を表示)
京都教育大学 国立 京都教育大学 2014年 第3問
次の問に答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は異なる$3$点,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.このとき,
\[ \mathrm{OA}^2+\mathrm{OB}^2=2(\mathrm{AM}^2+\mathrm{OM}^2) \]
であることを証明せよ.
(2)$xy$平面の原点$\mathrm{O}$を中心とする半径$3$の円を$\mathrm{O}_3$,$xy$平面の$\mathrm{O}$を中心とする半径$4$の円を$\mathrm{O}_4$とする.さらに$\mathrm{AB}$は$xy$平面上の長さ$6$の線分,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.次の条件$p,\ q$を考える.

$p:2$点$\mathrm{A}$,$\mathrm{B}$は$\mathrm{O}_4$の内部にある.
$q:$点$\mathrm{M}$は$\mathrm{O}_3$の内部にある.

このとき,次の問に答えよ.

(i) $p$は$q$であるための十分条件であることを証明せよ.
(ii) $p$は$q$であるための必要条件ではないことを証明せよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
福島大学 国立 福島大学 2014年 第4問
次の問いに答えなさい.

(1)半径$1$の円に内接する正$12$角形の面積と一辺の長さを求めなさい.
(2)半径$1$の円に外接する正$12$角形の面積と一辺の長さを求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)等差数列$\{a_n\}$は,初項から第$5$項までの和は$50$で,$a_5=16$であるとする.このとき,一般項$a_n$は,$a_n=[ア]$となり,初項から第$n$項までの和$S_n$は$S_n=[イ]$となる.
(2)$(x+1)^8 (x-1)^4$を展開したとき,$x^{10}$の項の係数は$[ウ]$である.また,$(x^2+x+1)^6$を展開したとき,$x^{10}$の項の係数は$[エ]$である.
(3)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=60^\circ$,$\mathrm{AB}=6$,$\mathrm{AC}=7$のとき,三角形$\mathrm{ABC}$の面積$S$は$S=[オ]$,辺$\mathrm{BC}$の長さは$\mathrm{BC}=[カ]$,三角形$\mathrm{ABC}$の外接円の半径$R$は$R=[キ]$である.
(4)$12^n$の正の約数の個数が$28$個となるような自然数$n$は,$n=[ク]$である.
北星学園大学 私立 北星学園大学 2014年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CA}=5$とする.以下の問に答えよ.

(1)$\angle \mathrm{A}$の大きさを求めよ.
(2)外接円の半径を求めよ.
(3)$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第6問
底面が半径$1$の円である円錐$S$と,$S$と相似であるが半径が不明な円錐$L$がある.

(1)$S$と$L$の表面積の比が$1:12$のとき$L$の底面の半径を求めると$[チ]$である.
(2)$(1)$の条件のもとで,$L$の高さが$6$のとき,$L$に側面と底面で内接する球の半径を求めると$[ツ]$であり,その球の体積を求めると$[テ]$となる.
近畿大学 私立 近畿大学 2014年 第1問
円$C_1$に内接する四角形$\mathrm{ABCD}$があり,$2$つの辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$となっている.$\angle \mathrm{ABC}=\theta$とおく.次の問に答えよ.

(1)$\mathrm{AC}^2=m+n \cos \theta$と表すと$m=[ア]$,$n=[イ]$である.ただし$m,\ n$は整数とする.
(2)四角形$\mathrm{ABCD}$の残りの辺の長さが$\mathrm{CD}=2$,$\mathrm{DA}=4$となっている.このとき$\cos \theta=[ウ]$,$\mathrm{AC}=[エ]$である.また円$C_1$の半径は$[オ]$,四角形$\mathrm{ABCD}$の面積は$[カ]$である.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。