タグ「分数」の検索結果

462ページ目:全4648問中4611問~4620問を表示)
岡山県立大学 公立 岡山県立大学 2010年 第4問
次の不定積分および定積分を求めよ.

(1)$\displaystyle \int \sin \left( \frac{\pi}{4}+x \right) \sin \left( \frac{\pi}{4} -x \right) \cos x \, dx$
(2)$\displaystyle \int \frac{x \log (x^2+1)}{x^2+1} \, dx$
(3)$\displaystyle \int_0^1 \frac{e^x}{2+3e^x+e^{2x}} \, dx$
大阪府立大学 公立 大阪府立大学 2010年 第1問
コインを$n$回投げて,表が出た回数$k$に応じてポイント$2^k$が与えられるゲームを考える.ただし,コインを投げたとき,表が出る確率を$\displaystyle \frac{1}{2}$とする.

(1)$n=4$として,このゲームを$1$ゲーム行なったとき,$8$ポイント以上を獲得する確率を求めよ.
(2)$n=4$として,このゲームを$3$ゲーム行なったとき,少なくとも$1$ゲームは$8$ポイント以上を獲得する確率を求めよ.
(3)$n=4$として,このゲームを$3$ゲーム行なったとき,獲得するポイントの合計が$32$以上となる確率を求めよ.
(4)このゲームを$1$ゲーム行なったとき,獲得するポイントの期待値を$n$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2010年 第2問
空間の3点A,B,Cは同一直線上にはないものとし,原点をOとする.空間の点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$が,$x+y+z=1$を満たす正の実数$x,\ y,\ z$を用いて,
\[ \overrightarrow{\mathrm{OP}}=x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}} +z\overrightarrow{\mathrm{OC}} \]
と表されているとする.

(1)直線APと直線BCは交わり,その交点をDとすれば,DはBCを$z:y$に内分し,PはADを$(1-x):x$に内分することを示せ.
(2)$\triangle$PAB,$\triangle$PBCの面積をそれぞれ$S_1,\ S_2$とすれば,
\[ \frac{S_1}{z}=\frac{S_2}{x} \]
が成り立つことを示せ.
県立広島大学 公立 県立広島大学 2010年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2$について,次の問いに答えよ.

(1)点P$\displaystyle \left(1,\ \frac{1}{2} \right)$における接線$\ell_1$の方程式を求めよ.
(2)点Pを通り直線$\ell_1$に直交する直線を$\ell_2$とする.直線$\ell_2$と$x$軸との交点Aの座標を求めよ.
(3)点Aを中心とし,直線$\ell_1$に接する円の方程式を求めよ.
(4)(3)の円と$x$軸との交点のうち原点に近い方の点Bの座標を求めよ.
(5)放物線,円弧BPおよび$x$軸で囲まれた図形の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
負でない実数を$a$とする.$xy$平面上で$\displaystyle 0 \leqq x \leqq a,\ 0 \leqq y \leqq \frac{1}{1+x}$を満たす領域を$A$とし,$A$を$x$軸のまわりに$1$回転してできる立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.次の問いに答えよ.

(1)$V_1$を求めよ.
(2)$V_2$を求めよ.
(3)$V_1-V_2$が最大となるときの$a$の値を$p$とおく.$p$を求め,$p<1$を示せ.
(4)$p<a<1$において$V_1=V_2$となる$a$が存在することを示せ.ただし,$\log 2<0.7$を使用してもよい.
高知工科大学 公立 高知工科大学 2010年 第3問
関数列
\[ f_n(x)=x^{n-1},\quad g_n(x)=\sum_{k=1}^n (-1)^{k-1}f_k(x) \quad (n=1,\ 2,\ \cdots) \]
について,次の各問に答えよ.

(1)$\displaystyle F_n(x) = \int_0^x f_n(t) \, dt$を求めよ.
(2)$\{g_n(x)\}$が数列として収束するための実数$x$の条件を求めよ.また,$x$がこの条件を満たすとき$\displaystyle g(x)=\lim_{n \to \infty}g_n(x)$とおく.
\[ \int_0^x g(t) \, dt \]
を求めよ.
(3)(1)の$F_n(x)$について
\[ -F_{n+1}(1) \leqq \int_0^1 \frac{(-1)^n f_{n+1}(t)}{1+t} \, dt \leqq F_{n+1}(1) \]
が成り立つことを証明せよ.
(4)無限級数
\[ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^{n-1} \frac{1}{n}+\cdots \]
の収束,発散について調べ,収束すればその和を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
関数$\displaystyle f_n(x)=x-\frac{x^2}{2}+\frac{x^3}{3}- \cdots +\frac{(-1)^{n-1}x^n}{n} \ $(ただし$x \geqq 0,\ n=1,\ 2,\ \cdots$)について,次の問いに答えよ.

(1)導関数$\displaystyle \frac{d}{dx}f_n(x)$を求めよ.
(2)$n$が偶数のとき,$f_n(x) \leqq \log (1+x)$,$n$が奇数のとき$f_n(x) \geqq \log (1+x)$であることを示せ.
(3)(2)を利用して$\displaystyle \log \frac{6}{5}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
(4)$\displaystyle \frac{1}{250}+\frac{1}{251}+\cdots +\frac{1}{299}+\frac{1}{300}$の値を,小数第3位を四捨五入して小数第2位まで求めよ.
京都府立大学 公立 京都府立大学 2010年 第4問
$A$を成分が実数である2次の正方行列,$E$を2次の単位行列とする.数列$\{a_n\}$を漸化式
\[ a_1=1,\quad a_{n+1}=a_n+2^n,\quad (n=1,\ 2,\ \cdots) \]
によって定める.$\displaystyle b_n=\sum_{k=1}^n a_k$とおく.また,座標平面上の点P$_n(x_n,\ y_n)$を
\[ \biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\quad \biggl( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \biggr)=A^{b_n}\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\quad (n=1,\ 2,\ \cdots) \]
によって定める.以下の問いに答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)$A$は$\sqrt{2}A^2=(1+\sqrt{3})A-\sqrt{2}E$を満たすとする.$A$の逆行列$A^{-1}$が存在することを示せ.
(3)(2),かつ,$\displaystyle x_2=\sqrt{\frac{1}{2}},\ y_2=\sqrt{\frac{3}{2}}$のとき,$x_3,\ y_3$を求めよ.ただし,$A^{-1}$が存在することを証明なしに用いてよい.
(4)(3)のとき,$x_{n+1}=x_1,\ y_{n+1}=y_1$となる最小の自然数$n$を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第1問
次の問いに答えよ.

(1)次の関係式を満たす数列$\{a_n\}$の一般項をそれぞれ求めよ.

\mon[(i)] $\displaystyle a_1=\frac{1}{4}, a_{n+1}=\frac{a_n}{3a_n+1} \quad (n=1,\ 2,\ 3,\ \cdots)$
\mon[(ii)] $a_1=1, a_{n+1}=2a_n+3^n \quad (n=1,\ 2,\ 3,\ \cdots)$

(2)行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が
\[ A^2-97A+2010E=O \]
を満たすとき,$a+d,\ ad-bc$の値の組をすべて求めよ.ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$とする.
(3)$a$を正の実数とするとき,極限値
\[ b=\lim_{n \to \infty} \frac{(n+1)^a+(n+2)^a+\cdots +(n+n)^a}{1^a+2^a+\cdots +n^a} \]
を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。