タグ「分数」の検索結果

328ページ目:全4648問中3271問~3280問を表示)
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第6問
$x \neq 0$のとき,$\displaystyle \left| \frac{x^2+7x+25}{x} \right|$の最小値およびそれを与える$x$の値を求めよ.
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第1問
次の問に答えなさい.

(1)式$8x^2-2x-15$を因数分解すると,
\[ ([$1$]x-[$2$])([$3$]x+[$4$]) \]
となる.
(2)$x$に関する$2$次方程式$2x^2-(2m-3)x-3m=0$が重解を持つとき,$m=[$5$]$である.
(3)$\displaystyle \frac{\sqrt{6}}{\displaystyle\frac{1}{\sqrt{2}}+\displaystyle\frac{1}{\sqrt{3}}} = [$6$] (\sqrt{[$7$]} - \sqrt{[$8$]})$である.

(4)$\displaystyle \frac{3\sqrt{2}-4\sqrt{3}}{\sqrt{2}}$より大きい整数のうち,最小の整数は[$9$]である.
(5)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を頂点とする長方形の辺$\mathrm{AB}$の長さを$a$とする.さらに$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$があり,$4$つの三角形$\mathrm{ABE}$,三角形$\mathrm{BCF}$,三角形$\mathrm{CDG}$,三角形$\mathrm{DAH}$はすべて長方形$\mathrm{ABCD}$の外側にある正三角形であるとする.このとき,点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{B}$,$\mathrm{F}$,$\mathrm{C}$,$\mathrm{G}$,$\mathrm{D}$,$\mathrm{H}$,$\mathrm{A}$をこの順に線分で結んでできる図形の周の長さを$L$とする.\\
\quad $L$を一定とするとき,長方形$\mathrm{ABCD}$の面積が最大になるのは$a=[$10$]$のときで,そのときの長方形$\mathrm{ABCD}$の面積は[$11$]である.
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第2問
次の問に答えなさい.

(1)$2$つの関数
\[ \begin{array}{ll}
y=|x|-1 & \cdots\cdots① \\
y=-|x|+1 & \cdots\cdots②
\end{array} \]
がある.関数$①$のグラフを$C_1$,$②$のグラフを$C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$12$],\ [$13$])$,$([$14$],\ [$15$])$で交わる.$C_1$は$y$軸と点$(0,\ [$16$])$で交わり,$C_2$は$y$軸と点$(0,\ [$17$])$で交わる.
(2)$2$つの関数
\[ \begin{array}{l}
y=\displaystyle\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} |x|-(\sqrt{5}+\sqrt{3}) \\ \\
y=-\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} |x|+(\sqrt{5}-\sqrt{3})
\end{array} \]
のグラフを,それぞれ,$C_1,\ C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$18$],\ [$19$])$,$([$20$],\ [$21$])$で交わる.また,$C_1$と$C_2$で囲まれた部分の面積は$\displaystyle\frac{[$22$]}{[$23$]}$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~シに当てはまる数または式を記入せよ.

(1)方程式$x^3-4x^2+ax+b=0$の$1$つの解が$1-2i$であるとき,実数解は$[ア]$であり,$a=[イ]$,$b=[ウ]$である.ただし,定数$a,\ b$は実数とし,$i$は虚数単位とする.
(2)サイコロを続けて$2$回振り,最初に出た目が$a$,次に出た目が$b$ならば座標平面上に直線$\ell:y=ax-b$を描く.この試行において,直線$\ell$が放物線$y=x^2$と相異なる$2$点で交わる確率は$[エ]$である.
(3)不等式$x^2+y^2+6x+4y-12 \leqq 0$の表す領域の面積は$[オ]$である.
(4)$\displaystyle x=\frac{1}{\sqrt{2}-1},\ y=\frac{1}{\sqrt{2}+1}$であるとき,$x^3+y^3-2xy^2=[カ]$である.
(5)$0 \leqq \theta < 2\pi$のとき,$\sqrt{3}\cos \theta-\sin \theta=r \sin (\theta +\alpha)$の形に変形すると,$r=[キ]$,$\alpha=[ク]$である.ただし,$0 \leqq \alpha < 2\pi$とする.
(6)実数からなる数列$\{a_n\}$が$a_{n+1}^3=2a_n^2,\ a_1=4$を満たすとき,$\log_2a_n=[ケ]$である.
(7)図のように東西$6$本,南北$6$本の道路で区画された場所がある.南西の端の地点$\mathrm{A}$から北東の端の地点$\mathrm{B}$へ行く最短ルートは$[コ]$通りある.
(図は省略)
(8)$3$次関数$f(x)=x^3-3a^2x+b (a>0)$が極大値$13$と極小値$-19$を持つならば$a=[サ]$,$b=[シ]$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$\displaystyle x=\frac{\sqrt{5}-1}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき,$x^3+y^3$の値は$[ア]$である.
(2)互いに異なる定数$a,\ b,\ c$が$\displaystyle \frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$を満たすとき,$\displaystyle \frac{(b+c)(c+a)(a+b)}{abc}$のとる値は$[イ]$である.ただし,$abc \neq 0$とする.
(3)白玉$3$個と黒玉$3$個が入っている袋から玉を$1$個取り出し,色を調べてもとに戻す.この試行を$3$回繰り返すとき,白玉を$2$回取り出す確率は$[ウ]$である.
(4)整式$P(x)$を$x-1$で割った余りが$-2$,$x-2$で割った余りが3,$x-3$で割った余りが8ならば,$P(x)$を$(x-1)(x-2)(x-3)$で割った余りは$[エ]$である.
(5)数列$\{a_n\}$は$a_1=-7$と漸化式$2a_{n+1}=3a_n+8 \ (n=1,\ 2,\ 3,\ \cdots)$で定められている.この数列の一般項は$a_n=[オ]$である.
(6)平行四辺形ABCDにおいて,辺ABを$2:1$に内分する点をE,辺BCの中点をF,辺CDの中点をGとする.線分CEと線分FGの交点をHとすると,$\overrightarrow{\mathrm{AH}}=[カ]\overrightarrow{\mathrm{AB}}+[キ]\overrightarrow{\mathrm{AD}}$となる.
(7)関数$f(x)=x^2-2ax+a+6$がすべての実数$x$に対して$f(x)>0$を満たすならば,定数$a$の値の取りうる範囲は,$[ク]<a<[ケ]$となる.
(8)関数$f(x)=ax^2+bx+1$が$f(1)=-6$と$\displaystyle \int_0^3 \{ f^\prime(x) \}^2 \, dx=63$を満たすならば,定数$a,\ b$の値は$a=[コ],\ b=[サ]$である.ただし,$f^\prime(x)$は$f(x)$の導関数を表す.
立教大学 私立 立教大学 2012年 第2問
正の数$a$に対して,空間内の$3$点$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{a}},\ 0,\ 0 \right)$,$\mathrm{B} (0,\ \sqrt{a},\ 0)$,$\mathrm{C} (0,\ 0,\ \sqrt{a})$を頂点とする三角形$\mathrm{ABC}$が与えられている.このとき,次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の$3$辺の長さ$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$a$で表せ.
(2)$\angle \mathrm{BAC}$を$\theta$とおく.$\cos \theta$を$a$で表せ.
(3)三角形$\mathrm{ABC}$の面積$S$を$a$で表せ.
(4)$\displaystyle \frac{S}{\mathrm{BC}}$が最小値をとるときの$a$の値とその最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
次の問いに答えよ.

(1)自然数$a=[(43)],\ b=[(44)]$は
\[ \frac{31}{99}=\frac{1}{a}+\frac{1}{b}+\frac{1}{11ab} \]
をみたす.ただし$a<b$とする.
(2)$4$人でプレーするゲームの大会がある.全部で$v$人のプレーヤーがゲームを繰り返し行い,各プレーヤーは他のすべてのプレーヤーと必ず$1$回だけ対戦する.\\
\quad この大会の総ゲーム数を$b$とし,各プレーヤーは$r$回のゲームに参加するとする.たとえば$r=1$のとき,$v=[(45)],\ b=[(46)]$であるが,$r=2,\ 3$のときは条件をみたす大会は成立しない.$r=4$のとき,$v=[(47)][(48)],\ b=[(49)][(50)]$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~キに当てはまる数または式を記入せよ.

(1)$0 \leqq \theta < \pi$の範囲で,$\cos^2 \theta+2\sqrt{3}\sin \theta \cos \theta-\sin^2 \theta$の最小値は[ア]であり,そのときの$\theta$の値は[イ]である.
(2)$\displaystyle \frac{a^x-a^{-x}}{2}=1$のとき,$x=\log_a y$と表せば,$y=[ウ]$である.ただし,$a>0$,$a \neq 1$とする.
(3)さいころを$3$回投げ,出た目を順に,百の位,十の位,一の位にして$3$桁の自然数をつくる.このとき,この自然数が$6$で割り切れ,さらに桁の並びを逆にしても$6$で割り切れる確率は[エ]である.
(4)最高次の係数が$1$の整式$P(x)$で,条件$P(2)=0,\ P(0)=1,\ P(1)=2$をみたすもののうち,最も次数の低いものは$P(x)=[オ]$である.
(5)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(6,\ 2)$を頂点とする三角形$\mathrm{OAB}$の外心の座標は$([カ],\ [キ])$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$\sqrt{2} \div \sqrt[4]{4} \times \sqrt[12]{32} \div \sqrt[6]{2}=2^a$とすると$a=[ア]$である.
(2)座標空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 2,\ 1)$,$\mathrm{B}(1,\ 3,\ 5)$,$\mathrm{C}(x,\ y,\ z)$がある.ベクトル$\overrightarrow{\mathrm{OC}}$は,ベクトル$\overrightarrow{\mathrm{OA}}$およびベクトル$\overrightarrow{\mathrm{OB}}$と垂直である.このとき,$(x,\ y,\ z)=[イ]$である.ただし,$x>0$,$|\overrightarrow{\mathrm{OC}}|=1$とする.
(3)$i$を虚数単位として,複素数$x=\sqrt{3}+\sqrt{7}i$を考える.$x$と共役な複素数を$\overline{x}$とするとき,$x^3+\overline{x}^3$の値は$[ウ]$である.
(4)$\log_2x+\log_4y=1$のとき,$x^2+y$の最小値は$[エ]$である.
(5)$4$つの数字$0,\ 1,\ 2,\ 6$から,$18$で割り切れる$4$桁の数を作るとすると$[オ]$通りできる.ただし,同じ数字は$2$度以上使わないものとする.
(6)$\cos 75^\circ$の値は$[カ]$である.
(7)$\displaystyle \left( x^3-\frac{1}{2} \right)^{10}$の展開式における$x^{15}$の係数は$[キ]$である.
(8)三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\angle \mathrm{OAC}=40^\circ$,$\angle \mathrm{OCB}=25^\circ$のとき,$\angle \mathrm{AOC}=[ク]$であり,$\angle \mathrm{ABO}=[ケ]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面上に$2$点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\displaystyle \mathrm{Q}(\frac{3}{2}\cos \theta,\ \frac{3}{2}\sin \theta)$がある.点$\mathrm{R}$を$\mathrm{PR}:\mathrm{QR}=1:2$を満たす点とする.

(1)点$\mathrm{R}$が直線$y \cos \theta-x \sin \theta=0$上にあるとき,それらの点の座標は
\[ \left( \frac{[ク]}{[ケ]} \cos \theta,\ \frac{[コ]}{[サ]} \sin \theta \right),\quad \left( \frac{[シ]}{[ス]} \cos \theta,\ \frac{[セ]}{[ソ]} \sin \theta \right) \]
である.ただし,$\displaystyle \frac{[ク]}{[ケ]}>\frac{[シ]}{[ス]}$とする.
(2)$\mathrm{R}$の軌跡は方程式
\[ \left( x-\frac{[タ]}{[チ]} \cos \theta \right)^2+\left( y-\frac{[ツ]}{[テ]} \sin \theta \right)^2=\frac{[ト]}{[ナ]} \]
が表す円$D(\theta)$である.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を動くとき,(2)で求めた$D(\theta)$が通過する部分の面積は$\displaystyle \frac{[ニ]}{[ヌネ]} \pi$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。